

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Findig 0.1.0 documentation

Welcome to Findig’s documentation!

Findig is a micro-framework for developing HTTP applications in Python. It is
built on Werkzeug [http://werkzeug.pocoo.org] and is intended as an alternative to Flask [http://flask.pocoo.org] when
developing RESTful APIs.

The documentation is split into two parts: the user guide (which includes
installation and quickstart instructions) and detailed API documentation.

Note

The documentation here isn’t complete yet. If you stumble
across something that you think should be documented, but isn’t,
please feel free to
let us know about it [https://github.com/geniphi/findig/issues/new]
on our issue tracker.

You may also clone the
Github Repository [https://github.com/geniphi/findig] and submit
pull requests with documentation fixes for review.

Findig uses Werkzeug internally, and so some understanding of how
Werkzeug works and its data types, while not necessary, will
almost certainly be helpful:

	Werkzeug documentation [http://werkzeug.pocoo.org/docs].

User Guide

This part of the documentation is a comprehensive guide for getting
things done with Findig, as well as some notes on its design.

	Introduction
	What Findig is

	A word on customization

	When to use (and not to use) Findig

	Installation
	Supported Python versions

	Installing the development version

	Getting extra features

	Getting the source code

	Quickstart
	The tiniest JSON application

	Adding resources

	Collections

	Data operations

	Restricting HTTP Methods

	Custom applications

	taskman — A tutorial
	The basic application

	Serving it up

	Adding our data models

	Validating data

	Calling our API

	Customizing error output

	Wrapping up

API Documentation

This section isn’t ready yet. Please check back later.

	Findig core modules
	App — classes for creating WSGI callables

	findig.content — Formatters, parsers and error handlers

	findig.context — Request context variables

	findig.data_model — Data access for Findig applications

	findig.dispatcher – Low-level dispatchers for Findig applications

	findig.resource — Classes for representing API resources

	findig.wrappers — The Findig Request object

	Higher-level tools
	findig.tools.counter — Hit counters for apps and resources

	findig.tools.protector — Authorization tools

	findig.tools.protector.scopeutil — tools for working with auth scopes

	findig.tools.validator — Request input validators

	Abstract classes for higher-level tools

	Added features enabled by third-party libraries
	findig.extras.redis — Some tools that are backed by Redis

	General Utilities

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

Introduction

This section gives a brief introduction to what Findig is, its
design philosophy, and what to expect when using it.

What Findig is

Findig is a micro-framework for building HTTP applications. It’s perhaps
comparable to Flask [http://flask.pocoo.org/] and Bottle [http://bottlepy.org/] in terms of size and ease of use.
Continuing in their tradition, it makes it incredibly easy to set up
a WSGI application, and avoids forcing specific choices on you
(such as a database layer or templating engine). However, Findig is
geared specifically toward building RESTful web applications, so much so
that serving HTML for web browsers with Findig would be incredibly
counter-intuitive.

Where traditional frameworks typically describe web applications in
terms of views (or pages) and routes, Findig applications are described
in terms of resources and CRUD actions, and the actual generation of
views is done behind the scenes. Here’s an example of what an application
that serves a simple JSON API looks like in Findig:

from findig.json import App
from dbstack.users import get, save, delete

app = JSONApp()

@app.route("/users/<int:id>")
def user(id):
 user = get(id)
 return user.as_dict()

@user.model("write")
def user(data, id):
 save(id, data)
 return get(id).as_dict()

@user.model("delete")
def user(id):
 delete(id)

app is a WSGI callable that can be run by your
WSGI server of choice

This code will accept and respond to application/json
GET|PUT|DELETE requests sent to /users/:id on the server,
as long as id looks like an integer. Notice how rather than
describing the resource in terms of how it looks (i.e., a view), the
resource is described in terms of how to read, write and delete its data.
It’s implied that Findig will use this data to organize the
views and construct the responses. Behind the scenes the
findig.json.App converts the resource data into a JSON formatted
response.

A word on customization

As seen above, Findig lets you describe how to manipulate resource data
and then runs along and does everything else to handle requests
(including parsing input and formatting output). If that sounds a little
heavy on the fascism, don’t despair; it’s actually really customizable.

Input parsing, output formatting and error handling can be globally or
selectively overridden in all Findig applications. For example, if we
wanted to also output to XML based on an accept header,
we could add the following code:

@user.formatter.register("application/xml")
def format_xml_response(user_dict):
 # This registers an xml formatter for the user resource
 xml = generate_user_xml_by_some_means(user_dict)
 return xml

In addition, a lot of Findig’s internals are based on abstract classes,
allowing you to plug in custom components that do things just the way you
want them done (let’s hope it never comes to that, though).

When to use (and not to use) Findig

Note

Findig is plain and simple pre-release software. This section
right now is largely irrelevant for production applications:
you simply don’t.

Findig is an API framework that’s intended for building APIs, and it aims
to be great at doing only that. As a result, support for applications that
talk to traditional web browsers is virtually non-existent. Instead, use
Findig if you want to build a backend API that powers your web apps and/or
mobile applications.

Note

Findig can be used to back angularjs [http://https://angularjs.org/] apps.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

Installation

Note

Findig is pre-release software and isn’t currently installable
by PyPI. Currently the only way to install Findig is using
its development version.

Installing Findig is easy, as long as you have the right tool for the
job. Make sure you have pip installed [http://pip.readthedocs.org/en/latest/installing.html] before proceeding.

Supported Python versions

Findig currently supports Python 3.4.

Installing the development version

You can install the development version of Findig straight from
Github [https://github.com/geniphi/findig]. Just run the following pip command (make sure you
have git installed on your system):

$ pip install git+https://github.com/geniphi/findig.git#egg=Findig

This will install the latest version of Findig on your system.

Getting extra features

Findig has some extra features that are enabled when certain packages
are installed on the system. They are defined as extras that can be
specified when installing Findig. To install an extra feature, just
include its name inside square brackets immediately after ‘Findig’ in
your pip install command. Multiple extra features can be installed by
listing them inside square brackets, separated by commas. For example, to
install the development version of Findig with redis cache support, run
this command:

$ pip install git+https://github.com/geniphi/findig.git#egg=Findig[redis]

And pip will install Findig along with all the requirements necessary
for the extra feature to work.

Here’s a list of all the supported extra features:

	Feature name
	Description
	Installed Requirements

	redis
	Redis data set support
	redis

Getting the source code

The source code for Findig is hosted on Github [https://github.com/geniphi/findig]. If you have Git
installed, you can clone the repository straight to your hard drive
from a command shell:

$ git clone git://github.com/geniphi/findig.git

Alternatively, you can download a source tarball [https://github.com/geniphi/findig/tarball/master] or zipball [https://github.com/geniphi/findig/zipball/master], both of
which will contain the latest source code from the repository.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

Quickstart

Ready to get started? This section gives you a quick introduction to
using Findig and it’s basic patterns.

The tiniest JSON application

Here’s the smallest app you can write in Findig:

from findig.json import App
from werkzeug.serving import run_simple

app = App(indent=4, autolist=True)

if __name__ == '__main__':
 run_simple('localhost', 5000, app)

This barebones app exposes a list of resources that are exposed by your
app, and the HTTP methods that they support. Save it as listr.py, and
run as follows:

$ python listr.py
 * Running on http://localhost:5000/ (Press CTRL+C to quit)

Now, send a GET request to the root of your app:

$ curl http://localhost:5000/
[
 {
 "methods": [
 "HEAD",
 "GET"
],
 "url": "/",
 "is_strict_collection": false
 }
]

We see that the response is a singleton list with an autogenerated JSON
resource. That single item is the same one we just queried, and it was
added by the autolist=True argument to our application. That tells the
application to create a resource at the server root that lists all of the
resources available on the API. Since we haven’t added any other resources,
this is the only one available.

Adding resources

To add a resource, tell the app how to get the resource’s data, and
what URLs route to it:

@app.route("/resource")
def resource():
 return { "msg": "Hello World!" }

What we’ve defined here is a pretty useless static resource, but it’s
okay because it’s just for illustrative purposes. Typically, each
resource is defined in terms of a function that gets the data associated
with it, here we’ve aptly called ours resource. The
app.route() decorator factory takes a
URL rule specification and registers our resource at any URL that
matches.

Hint

So what type should your resource function return? Well, Findig
doesn’t actually have any specific restrictions. If you’re
working with a JSON app though, you should probably stick to
Python mappings and iterables.

Other types can by used seamlessly with custom formatters.

The code above is actually shorthand for the following:

@app.route("/resource")
@app.resource
def resource():
 return { "msg": "Hello World!" }

app.resource takes a resource
function and turns it into a Resource, which
can still be called as though they are resource functions.

You can use arguments to customize resource creation:

@app.route("/resource")
@app.resource(name="my-super-special-resource")
def resource():
 return {"msg": "Hello, from {}".format(resource.name)}

Resource names are unique strings that identify the resource somehow.
By default, Findig will try to generate one for you, but that can be
overridden if you want your resources to follow a particular naming
scheme (or if you want to treat two resources as the same, by giving
them the same name).

See finding.resource.Resource for a full listing of
arguments that you can pass to resources.

Note

While you can omit @app.resource if your resource doesn’t
need any arguments, you shouldn’t ever omit @app.route
unless you really intend to have a resource that can never
be reached by the outside world!

Collections

Some resources can be designated as collections of other resources.
Resource instances have a special decorator to help you set this up:

@app.route("/people/<int:idx>")
def person(idx):
 return people()[idx-1]

@app.route("/people/")
@person.collection
def people():
 return [
 {"name": "John Doe", "age": 40},
 {"name": "Jane Smith", "age": 34}
]

What’s going on here? Well, we’ve defined a person resource that routes
to a strange looking URL. Actually, /people/<int:idx> is a URL rule
specification; any URL that matches it will route to this resource. The
angle brackets indicate a variable part of the URL. It includes an
optional converter, and the name of the variable part. This spec will
match the URLs /people/0, /people/1, people/2 etc, but not
/people/anthony (because we specfied an int converter;
to match ordinary strings, just omit the converter: people/<idx>). A
URL spec can have as many variable parts as needed, however the resource
function must take a named parameter matching each of the variable parts.

Next, we define a people resource that’s a collection of person
using person.collection as a decorator. The resource functions
for collections are expected to return iterables that contain
representations of the contained items.

Like resources, collections can take arguments too:

@app.route("/people/")
@person.collection(include_urls=True)
def people():
 return [
 {"name": "John Doe", "age": 40, "idx": 1},
 {"name": "Jane Smith", "age": 34, "idx": 2}
]

The include_urls=True instructs the collection to insert a URL field
in the generated items that points to that specific item on the API
server. The only caveat is that the item data that we return from the
collection’s resource function has to have enough information contained
to build a URL for the item (that’s why we added the idx field here).

See finding.resource.Collection for a full listing of
arguments that you can pass to collections.

Data operations

The HTTP methods that Findig will expose depends on the data
operations that you’ve defined for your resource. By default, GET
operations are exposed for every resource, since we have to define
resource functions that get the resources’s data. Makes sense right?

But what about the other HTTP methods? We can support PUT requests by
telling Findig how to write new resource data:

@resource.model("write")
def write_new_data(data):
 # Er, we don't have a database set up, so let's just complain
 # that it's poorly formatted.
 from werkzeug.exceptions import BadRequest
 raise BadRequest

That .model() function is actually a function available by default on
Resource instances that lets you provide
functions that manipulate resource data. Here, we’re specifying a function
that writes new data for the resource, and its only argument is the new
data that should be written, taken from the request body. Here’s a
complete list of data operations that you can add, and what they should
do:

	Operation
	Arguments
	Description

	write
	data
	Replaces completely the data for the resource, and
enables PUT requests on the resource.

	make
	data
	Creates a new child resource with the input data. It
should return a mapping of values that can be used to
route to the resource. If present, it enables POST
requests.

	delete
	
	Delete’s the resource’s data and enables DELETE
requests on the resource.

Restricting HTTP Methods

Sometimes, your might define more data operations for a resource than you
want directly exposed on the API. You can restrict the HTTP methods for
a resource through it’s route:

@app.route("/resource", methods=['GET', 'DELETE'])
def resource():
 # return some resource data
 pass

@resource.model('write')
def write_resource(data):
 # save the resource data
 pass

@resource.model('delete')
def delete_resource():
 # delete the resource
 pass

PUT requests to this resource will fail with status
405: METHOD NOT ALLOWED, even though we have a write operation
defined.

Custom applications

Suppose you wanted to build an API that wasn’t JSON (hey, I’m not
here to judge)? That’s entirely possible. You just have to tell Findig
how to convert to and from the content-types that you plan to use.

from findig import App

app = App()

@app.formatter.register("text/xml")
def convert_to_xml(data):
 s = to_xml(data)
 return s # always return a string

@app.parser.register("text/xml")
def convert_from_xml(s)
 obj = from_xml(s)
 return obj

Pretty straightforward stuff; convert_to_xml is a function that takes
resource data and converts it to an xml string. We register it as the
data formatter for the text/xml content-type using the
@app.formatter.register("text/xml") decorator. Whenever a client
sends an Accept header with the text/xml content-type, this
formatter will be used. Similarly, convert_from_xml converts an xml
string to resource data, and is called when a request with a text/xml
content-type is received.

That’s great, but what happens if the client doesn’t send an Accept
header, or if it sends request content without a content-type? Well,
Findig will send a text/plain response (it calls str on the
resource data; hardly elegant) in the first case, and send back an
UNSUPPORTED MEDIA TYPE error in the second case. To avoid this, you
can set a default content-type that is assumed if the client doesn’t
specify one. Here’s the same example from above setting text/xml
as the default:

from findig import App

app = App()

@app.formatter.register("text/xml", default=True)
def convert_to_xml(data):
 s = to_xml(data)
 return s # always return a string

@app.parser.register("text/xml", default=True)
def convert_from_xml(s)
 obj = from_xml(s)
 return obj

Tip

findig.json.App does this for the application/json
content-type.

An application can register as many parsers and formatters as it needs,
and can even register them on specific resources. Here’s how:

from pickle import dumps
from findig import App

app = App()
app.formatter.register("x-application/python-pickle", dumps, default=True)

@app.route("/my-resource")
def resource():
 return {
 "name": "Jon",
 "age": 23,
 }

@resource.formatter.register("text/xml")
def format_resource(data):
 return "<resource><name>{}</name><age>{}</age></resource>".format(
 data['name'],
 data['age']
)

So this app has a global formatter that pickles resources and returns
them to the client (look, it’s just an example, okay?). However, it has a
special resource that can handle text/xml responses as well, using the
resource-specific formatter that we defined.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

taskman — A tutorial

Our tutorial is a simple API that lets you create tasks, edit them, and
mark them as finished.

The basic application

Let’s go ahead and create our app and declare our resources. They won’t do
anything for now, but will help us get a firm idea of how the API is laid out.

Add the following to a file and save it as taskman.py

from findig.json import App

app = App()

@app.route("/tasks/<id>")
@app.resource
def task(id):
 return {}

@app.route("/tasks/")
@task.collection
def tasks():
 return []

We want our API to serve JSON resources, so we’ve imported and initialized
findig.json.App. We could’ve supported a different data format, but
we’d have to write the code to convert the resources ourselves, since Findig
only includes converters for JSON. For this tutorial we’ll just stick to JSON
(it’s pretty darn good!).

Next, we declare a resource called task. This resource is going to
represent a single task, and provide an interface for us to delete and update
individual tasks. There’s quite a bit going on here:

	@app.route("/tasks/<id>") assigns a URL rule to our task resource.
The URL rule tells findig what sort of URLs should route to our resource.
The second part of the rule is interesting; by enclosing id in angle
brackets, we’ve created a variable part of the URL rule. When matching a
URL, Findig will match the static part of the rule exactly, but try to match
other parts of the URL to the variables. So for example,
/tasks/foo and /tasks/38 will route to this resource, using 'foo'
and '38' as the id (variable part) respectively. This kinda important,
because we can use just one resource to group all of our tasks together, but
use the variable part URL to identify the exact task that we’re referring to.
By the way, here’s the documentation for
app.route.

	@app.resource declares a resource.
app.resource wraps a
resource function and returns a findig.resource.Resource. This
means that in our code, task will be replaced by a Resource object
(Resources act like functions, so you can still call it if you
want to).

	task(id) is our resource function for a task. Notice that it takes an argument
called id. This is because of our URL rule; for every variable part in a
URL rule, a resource function must accept a named argument (keyword arguments
work too) that matches the variable part’s name. So when task is called by
Findig, it will be called with an id that’s extracted from the URL. Resource
functions are supposed to return the resource’s data (in other words, what
should be sent back on a GET request). Our resource function returns an empty
dictionary. That’s because the JSON converters know how to work with
dictionaries; if we were to send a GET request to any task right now
(example: GET /tasks/foo) we would receive an empty JSON object as the
response.

The next block declares our tasks collection. We’ll use it to get a list
of all of our tasks, and to add new tasks to that list. Bit by bit, here’s
what is going on in that code:

	@app.route("/tasks/") should be familiar. We’re once again assigning a URL
rule, only this time there are no variable parts so it will match only one
URL (/tasks/).

	@task.collection declares tasks as a collection containing task
resource instances. Remember how app.resource turned our resource function
into a Resource? Well that’s where the collection
function comes from. Here, collection() wraps a
resource function and turns it into a Collection
(which are callable, just like a Resource—in fact, they are Resources).

	tasks() is our resource function for the tasks collection. We return an
empty list because the JSON converters know how to turn an iterable into a
JSON list; if we sent GET /tasks to our API, we’d get an empty JSON list
as the response.

Serving it up

If we were deploying a production application, we’d be using a web server like
Apache to serve up our API. But since this is a measly tutorial, we can get
away with using Werkzeug’s built-in development server (see that ‘development’
in front of server? It means you should only use it during development ;)).

Go ahead and add this to the bottom of taskman.py:

if __name__ == '__main__':
 from werkzeug.serving import run_simple
 run_simple("localhost", 5000, app, use_reloader=True, use_debugger=False)

This serves up our application on port 5000 on the local machine.
use_reloader=True is a handy setting that reloads the application anytime
your change the source file. You might be tempted to set use_debugger=True,
but don’t; we set it to False (the default) deliberately to make the point
that since the werkzeug debugger is tailored for HTML, it is almost certainly
useless for debugging a Findig app.

Adding our data models

We’re going to need to store our tasks somewhere. Findig uses data models to
figure out how to interface with stored resource data. This section is a little
long-winded, because it presents the roundabout way of declaring models, and then
promptly throws all of that away and uses a shorter method instead (don’t
hate, okay? This is still a tutorial, so it’s important for you to grasp the
underlying concepts).

Explicit data models

We can declare data model functions to instruct Findig on how to access stored
data for each resource. Whenever we do that, we’re using explicit data models.
That’s what we’ll cover in this section.

We won’t use any of the code we add in this section in our final application,
but it’s important that we go through it anyway so that you grasp the
underlying concepts. If you don’t care for any of that, you can probably
skip ahead to Data sets (but don’t blame me if you don’t understand
how they work!).

Let’s start with the task resource. Remember that we want to use that
resource to update and delete individual tasks. Add this code to taskman.py

TASKS = []

@task.model("write")
def write_task(data):
 TASKS[task.id] = data

@task.model("delete")
def delete_task():
 del TASKS[task.id]

TASKS = [] sets up a global module-level list that tracks all of our tasks.
Since this is throwaway code anyway, there’s no harm in storing our tasks in
memory like this; it’ll never really get used! Were this a production application,
then you would be fully expected to use a more responsible data storage backend.
And if you didn’t, well, you’d just have to face the consequences, wouldn’t you?

Now, the first interesting thing happening here is the @task.model("write")
declaration. This is declaring a write_tasks as a function that can write new data
for a specific task. It gets passed a mapping of fields, directly converted
from data send by the requesting client. The next interesting thing is
task.id. During a request to our task resource, task.id will bind to
the value of the id URL variable.

Tip

Anytime a URL rule with variable parts is used to route to a resource,
Findig binds the values of those variables to the resource for the duration
of the request. This binding is completely context safe, meaning that even
when requests are running on multiple threads, {resource}.{var} will always
bind to the correct value.

Similarly, task.model("delete") declares delete_task as a function that deletes
a task. Delete model functions don’t take any arguments.

Whenever we introduce model functions, Findig will usually enable additional
request methods which correspond somewhat to the model functions. This table
gives the model functions, their signatures, and corresponding request methods:

	Model function
	Request method
	Supported resource type

	write(data:mapping)
	PUT
	Resource

	delete()
	DELETE
	Resource

	make(data:mapping) -> token
	POST
	Collection

You may notice that a “make” model is to be attached to a
Collection rather than a
Resource. It must however, create a resource instance
of the Resource that the collection collects.
The token returned from the “make” model function is a special mapping with
enough data to identify the resource instance that was created. By default,
you should make sure that it has at least the same fields as the arguments to
the resource instance’s resource function.

Anyway, from the table, you should be able to see that our task resource
now supports PUT and DELETE requests. Go ahead and test them out
(Remember to send application/json content with your PUT requests)!

But wait, we’re still not done. Remember that GET /tasks/<id> still always
returns an empty JSON object, no matter if we’ve already PUT a task there.
We need to fix that by updating the resource function to return the appropriate
task data; change you definition of task to look like this:

@app.route("/tasks/<id>")
@app.resource
def task(id):
 return TASKS[id]

But what if we get a URL that includes an id that is not in TASKS? That’s okay!
Findig automatically converts a LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] into an HTTP 404 response.
So when the invalid id throws a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError]
(a LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] subclass), it won’t crash; it’ll tell the requesting
client that it doesn’t know what task it’s asking about. Of course, if you’re
still not convinced, you can go ahead and catch that KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] and
raise a werkzeug.exceptions.NotFound [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.NotFound] error yourself.

Next, we’ll add the model for tasks:

@tasks.model("make")
def make_task(data):
 token = {"id": str(uuid4())}
 TASKS[token['id']] = data
 return token

update the resource function for our tasks collection:

@app.route("/tasks/")
@task.collection
def tasks():
 return TASKS

and finally add the following import to the top of the file:

from uuid import uuid4

Not a whole lot new is going on; In our “make” model, we’re using the built-in uuid.uuid4() [https://docs.python.org/3/library/uuid.html#uuid.uuid4]
function to generate random ids for our tasks (nobody ever said our ids had
to be numeric!), and we’re storing the data receive with that id. Finally, we
return the id as part of the token (remember that the token needs to contain
at least enough data to identify the task instance, and here, all we need is
id!).

And that’s it! We’ve built out our explicit data model. Now, let’s go throw
it away...

Data sets

Data sets are an alternative to explicit data model functions. They have the advantage
of being far less verbose, but aren’t quite as flexible. However, for most
resources, you may find that you don’t need that extra bit of flexibility, so
a data set is perfectly fine.

Essentially, a data set is a special collection of records, each corresponding to a
single resource instance. Instead of returning a straight-up list from a
collection resource function, we can return a data set instead. Since a
data-set is already an iterable object, we don’t actually lose anything by
dropping one in where we would normally return a list or a generator. However,
with a little coaxing, we can get Findig to inspect the data set and derive a
model from it, so you don’t have to type one out.

We’re going to be using the included
findig.extras.sql.SQLASet (which requires SQLAlchemy) with an SQLite
table for our tasks. There’s also a findig.extras.redis.RedisSet, but
it relies on a redis server which you may not have on your system (that’s a
little beyond the scope of this tutorial). Unlike RedisSet, SQLASet does
require a table schema to be declared, so the code is a little more verbose.

Let’s dig in! Add this to taskman.py right after your app initialization:

db = SQLA("sqlite:///tasks.sqlite", app=app)
validator = Validator(app)

class Task(db.Base):
 id = Column(Integer, primary_key=True)
 title = Column(String(150), nullable=False)
 desc = Column(String, nullable=True)
 due = Column(DateTime, nullable=False)

and add the following imports:

from sqlalchemy.schema import *
from sqlalchemy.types import *
from findig.extras.sql import SQLA, SQLASet

Tip

If the above import gives you an ImportError, it means that you
don’t have SQLAlchemy installed. You’ll need to install it to continue
(try: pip install sqlalchemy in your shell, if you have pip).

All we’ve done here is declare an SQLAlchemy orm schema.
findig.extras.sql.SQLA is a helper class for using SQLAlchemy inside
a findig application. The first argument we pass here sets up the database
engine (we store them in an SQLite database called ‘tasks.sqlite’; you’ll need
to make sure that your application process has write permission to the working
directory so that it can create that file), and we pass our app as a keyword
argument.

After that, we declare our tasks table and its ORM mapping. We set up our schema
with three columns (id, title and desc).

Next up, let’s use that schema to create an SQLA data set. Replace the
declaration for your tasks collection with this code:

@app.route("/tasks/")
@task.collection(lazy=True)
def tasks():
 return SQLASet(Task)

So some interesting changes. First up, we’ve added the lazy=True argument
to task.collection. This gives Findig the heads-up that this resource
function returns a data set (meaning that simply calling it does not make any
queries to the database). As a result, Findig is able to inspect the return
value when setting things up. Since it is a data set, Findig uses that to add
our model functions for us.

To complete our transition, replace the resource declaration for task with
this code:

@app.route("/tasks/<id>")
@app.resource(lazy=True)
def task(id):
 return tasks().fetch(id=id)

findig.extras.sql.SQLASet.fetch() can be thought of as a query. It returns
the first matching item as a
MutableRecord, which Findig also knows how to
extract data model functions from.

As a result, we don’t need our data model functions anymore, so you should go
ahead and delete them.

Validating data

At this point, we’ve developed a working web application, but it’s still
incomplete. Why, you ask? Because we haven’t actually put an constraints on
the data that we receive. As it stands, we could send any old data to our API
and get away with it, without a peep in protest from the application.

Note

Well that’s not strictly true; since we’ve added an SQL schema for the
tasks, SQLASet will try to make sure that any data that it receives
conforms to the schema at the very least. Still, it doesn’t perform
any checks on the actual values or do any type conversions for us,
and so we need to do that ourselves.

So what sort of constraints are we talking? Let’s look at the fields in our
task schema again, to get a better idea:

validator = Validator(app)

class Task(db.Base):
 id = Column(Integer, primary_key=True)
 title = Column(String(150), nullable=False)
 desc = Column(String, nullable=True)
 due = Column(DateTime, nullable=False)

First, let’s look at the id field. This field is an integer primary key, so
the engine will automatically generate one for us (as it does with all
integer primary key fields :D); we don’t need to put any constraints here
because we won’t be asking for one from the client.

Next there is the title field. It’s a string with a maximum length of
150 characters. It’s tempting to have our validation engine enforce this for us,
but if we pass a string longer than 150 characters to the database engine, it
will truncate it for us. I think that’s a reasonable compromise. We also see
that the field is marked as nullable=False; this meaans that it is
required.

Our desc field doesn’t have much in the way of constraints; it’s probably
okay to just let our user put any old thing in there.

Finally, our due field is meant to store a date/time. We should make sure
that whatever we receive from the client for ‘due’ can be parsed into a
date/time. Also, note that this field is also required.

Great! So let’s go set all of this up. The first thing we need to do is
create a Validator for our application.
Add this code right after you initialize your app:

validator = Validator(app)

and add this import:

from findig.tools.validator import Validator

Next up, let’s use the validator to enforce the constraints that we’ve
identified. First up, I think it’s a good idea to make sure that we don’t
get any extra fields. We can do that by adding this decorator at the top
of our resource declaration for task:

@validator.restrict("desc", "*due", "*title")

So what’s happening? We’re telling
the validator to only accept the fields desc, due and title. But
what’s with the *? If you guessed that the field is required, you’re right!
restrict() accepts a variable number of
field names, so we can restrict our resource input data to any number of
fields we want.

Tip

We’ve only set a validation rule for task, but what about tasks?
Since tasks is a collection of task instances, the validator will
check input for tasks with the rules we’ve defined for task by
default. If you want to disable this behavior, you can pass
include_collections=False to the validator constructor.

All we have to do now is check that the due date is date/time string, and
parse it into a datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] object.
With Validator.enforce, we
can supply a converter for the due field. A converter can by a simple type, a
magic string, or an application-defined function that takes a string as input
and returns the parsed output. Here’s what such a function can look like for
a date/time field like due:

def convert_date(string):
 import datetime
 format = "%Y-%m-%d %H:%M:%S%z"
 return datetime.datetime.strptime(string, format)

In fact, Validator.date is a
static method that simplifies this pattern; it takes a date/time format as its
argument and returns a converter function that parses a
datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] object using that format. That’s what we’ll use
to check our due field. Add this decorator to our task declaration:

@validator.enforce(due=validator.date("%Y-%m-%d %H:%M:%S%z"))

With that, we’ve set up validation for our request input. You should go ahead
and try sending requests to the API we’ve created.

Calling our API

By now, we have a pretty decent API, but how exactly do we use it? First,
let’s start our development server:

$ python taskman.py
 * Running on http://localhost:5000/ (Press CTRL+C to quit)
 * Restarting with stat

Our development server is running on port 5000. Calling our API is a
matter of sending application/json HTTP requests to the server. For testing,
you’ll need a program that can send application/json requests, since your
browser probably doesn’t provide an interface for this. The examples in this
section will use the command-line tool cURL [http://http://curl.haxx.se//],
but they’ll include all the details your need to send the requests with any
tool you prefer to use.

Tip

If you prefer a graphical interface, you might want to try the
Postman [https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop]
Google Chrome extension (pictured below).

[image: _images/postman.png]

Listing our tasks

Send a GET request to /tasks/. Here’s how to do it in cURL:

$ curl localhost:5000/tasks/
[]

The response is a JSON list containing all of the tasks that we have created.
Since we haven’t created any yet, we get an empty list.

Creating a new task

To create a new task, we send a POST request to /tasks/. The request
should have a Content-Type: application/json header, and the request body
must be a JSON object containing the attributes for our new task:

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title": "My Task"}' localhost:5000/tasks/
HTTP/1.0 400 BAD REQUEST
Content-Type: application/json
Content-Length: 91
Server: Werkzeug/0.10.4 Python/3.4.2
Date: Sat, 18 Jul 2015 03:33:58 GMT

{"message": "The browser (or proxy) sent a request that this server could not understand."}

What’s with the error here? Well, remember that we’ve set up a validator for
our tasks resource to require a ‘due’ field with a parseable date/time. Let’s
modify our request to include one:

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title": "My Task", "due": "2015-07-19 00:00:00+0400"}' localhost:5000/tasks/
HTTP/1.0 201 CREATED
Content-Length: 9
Content-Type: application/json
Date: Sat, 18 Jul 2015 03:40:01 GMT
Location: http://localhost:5000/tasks/1
Server: Werkzeug/0.10.4 Python/3.4.2

{"id": 1}

Notably, the status code returned is 201 CREATED and not 200 OK.
Additionally, Findig will try to fill the Location header, as long as
the data returned from the collection resource function is enough to build
a URL for the created resource instance. Our resource function uses
SQLASet, which returns the primary key fields.

Editing a task

For this one, we send a PUT request to the task URL. Just like when creating
a task, The request should have a Content-Type: application/json header, and
the request body must be a JSON object containing the attributes for our updated
task. We must send all fields, including the ones that we’re not updating,
since this request type overwrites all of the task’s data (unfortunately,
Findig doesn’t support PATCH [https://github.com/geniphi/findig/issues/9]
yet):

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title": "My Task", "due": "2015-07-19 00:00:00+0400", "desc": "My awesome task dawg."}' localhost:5000/tasks/1
HTTP/1.0 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 0
Server: Werkzeug/0.10.4 Python/3.4.2
Date: Sat, 18 Jul 2015 03:47:00 GMT

Deleting a task

You can probably guess this one; to do this, we send a DELETE request to the
task’s URL. Let’s delete that task we just created; we’re fickle like that:

$ curl -i -X DELETE localhost:5000/tasks/1
HTTP/1.0 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 0
Server: Werkzeug/0.10.4 Python/3.4.2
Date: Sat, 18 Jul 2015 03:52:12 GMT

It works! It all works!

Customizing error output

Remember when we sent a POST request to /tasks/ without a required
field and it gave us a cryptic error message? We should probably do something
about that. We’re gonna return a little bit more information to let the
client know what exactly has gone wrong.

To do this, we have to override the application’s default error handler, which
Findig allows us to do for specific exception types by default [1]. The key
is realising that Validator raises specific
exceptions when something goes wrong, all resolving to 400 BAD REQUEST:

	findig.tools.validator.MissingFields – Raised when the validator
expects one or more required fields, but the client does not send them.

	findig.tools.validator.UnexpectedFields – Raised when the
validator receives one or more fields that it does not expect.

	findig.tools.validator.InvalidFields – Raised when the validator
receives one or more fields that can’t be converted using the supplied
converters.

Knowing this, we can update the app to send a more detailed error whenever
a missing field is encountered:

@app.error_handler.register(MissingFields)
def on_missing_fields(err):
 output = {
 "error": {
 "type": "missing_fields",
 "fields": err.fields
 },
 "message": "The input is missing one or more parameters.",
 }

 # app.make_response comes from findig.json.App, and is not
 # available on findig.App.
 return app.make_response(output, status=400)

You’ll also want to import MissingFields:

from findig.tools.validator import MissingFields

Now, let’s send another request omitting a field:

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title": "My Task"}' localhost:5000/tasks/
HTTP/1.0 400 BAD REQUEST
Content-Type: application/json
Content-Length: 114
Server: Werkzeug/0.10.4 Python/3.4.2
Date: Sat, 18 Jul 2015 05:09:34 GMT

{
 "error": {
 "type": "missing_fields",
 "fields": [
 "due"
]
 },
 "message": "The input is missing one or more parameters."
}

As expected, this time we get a more detailed error response.

Here’s a little exercise for you; why don’t you go ahead and update the app
to provide detailed messages for when the client sends an unrecognized field,
and for when the client sends badly formed data for the due field?

	[1]	This can change in very specific circumstances. In particular, if you
supply an error_handler argument to the application constructor, then
this method is no longer available; you would have to check for specific
exceptions in the function body of your custom error_handler instead.

Wrapping up

Whew! Here’s the full source code for the app we’ve built:

from datetime import datetime

from findig.extras.sql import SQLA, SQLASet
from findig.json import App
from findig.tools.validator import Validator, MissingFields, UnexpectedFields, InvalidFields
from sqlalchemy.schema import *
from sqlalchemy.types import *

app = App()
db = SQLA("sqlite:///tasks.sqlite", app=app)
validator = Validator(app)

class Task(db.Base):
 id = Column(Integer, primary_key=True)
 title = Column(String(150), nullable=False)
 desc = Column(String, nullable=True)
 due = Column(DateTime, nullable=False)

@validator.restrict("*title", "desc", "*due")
@validator.enforce(due=validator.date("%Y-%m-%d %H:%M:%S%z"))
@app.route("/tasks/<id>")
@app.resource(lazy=True)
def task(id):
 return tasks().fetch(id=id)

@app.route("/tasks/")
@task.collection(lazy=True)
def tasks():
 return SQLASet(Task)

@app.error_handler.register(MissingFields)
def on_missing_fields(err):
 output = {
 "error": {
 "type": "missing_fields",
 "fields": err.fields
 },
 "message": "The input is missing one or more parameters.",
 }

 # app.make_response comes from findig.json.App, and is not
 # available on findig.App.
 return app.make_response(output, status=400)

if __name__ == '__main__':
 from werkzeug.serving import run_simple
 run_simple("localhost", 5000, app, use_reloader=True, use_debugger=False)

We’ve designed an built a functioning API, but we’ve only used a subset
of what Findig has to offer. Have a look at
Counter for a tool that counts hits to your
resources (this is more useful than it sounds upfront). The
findig.tools.protector module provides utilies for restrict access to
your API to authorized users/clients.

If you’re interested in supporting custom content-types, rather than just
JSON, have a look at Custom applications. The process is very similar
to the custom error handler we built in this tutorial.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

Findig core modules

Findig provides a number of core modules that each typical application
uses in some way (whether explicitly by the application code, or
internally by Findig). They are documented in these pages:

	App — classes for creating WSGI callables

	findig.content — Formatters, parsers and error handlers

	findig.context — Request context variables

	findig.data_model — Data access for Findig applications

	findig.dispatcher – Low-level dispatchers for Findig applications

	findig.resource — Classes for representing API resources

	findig.wrappers — The Findig Request object

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Findig core modules

App — classes for creating WSGI callables

The core Findig namespace defines the Findig :class:App class, which
is essential to building Findig applications. Every :class:App is
capable of registering resources as well as URL routes that point to them,
and is a WSGI callable that can be passed to any WSGI complaint server.

	
class findig.App(autolist=False)[source]

	Bases: findig.dispatcher.Dispatcher

	
request_class

	The class used to wrap WSGI environments by this App instance.

alias of Request

	
build_context(environ)[source]

	Start a request context.

	Parameters:	environ – A WSGI environment.

	Returns:	A context manager for the request. When the context
manager exits, the request context variables are destroyed and
all cleanup hooks are run.

Note

This method is intended for internal use; Findig will
call this method internally on its own. It is not re-entrant
with a single request.

	
cleanup_hook(func)[source]

	Register a function that should run after each request in the
application.

	
context(func)[source]

	Register a request context manager for the application.

A request context manager is a function that yields once, that is
used to wrap request contexts. It is called at the beginning of a
request context, during which it yields control to Findig, and
regains control sometime after findig processes the request. If
the function yields a value, it is made available as an
attribute on findig.context.ctx with the same name as the
function.

Example:

>>> from findig.context import ctx
>>> from findig import App
>>>
>>> app = App()
>>> items = []
>>> @app.context
... def meaning():
... items.extend(["Life", "Universe", "Everything"])
... yield 42
... items.clear()
...
>>> with app.test_context(create_route=True):
... print("The meaning of", end=" ")
... print(*items, sep=", ", end=": ")
... print(ctx.meaning)
...
The meaning of Life, Universe, Everything: 42
>>> items
[]

	
startup_hook(func)[source]

	Register a function to be run before the very first request in
the application.

	
test_context(create_route=False, **args)[source]

	Make a mock request context for testing.

A mock request context is generated using the arguments here.
In other words, context variables are set up and callbacks are
registered. The returned object is intended to be used as a
context manager:

app = App()
with app.test_context():
 # This will set up request context variables
 # that are needed by some findig code.
 do_some_stuff_in_the_request_context()

After the with statement exits, the request context
variables are cleared.

This method is really just a shortcut for creating a fake
WSGI environ with werkzeug.test.EnvironBuilder [http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder] and
passing that to build_context(). It takes the very same
keyword parameters as EnvironBuilder [http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder];
the arguments given here are passed directly in.

	Parameters:	create_route – Create a URL rule routing to a mock resource,
which will match the path of the mock request. This must be set to True if the mock
request being generated doesn’t already have a route registered
for the request path, otherwise this method will raise a
werkzeug.exceptions.NotFound [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.NotFound] error.

	Returns:	A context manager for a mock request.

	
class findig.json.App(indent=None, encoder_cls=None, autolist=False)[source]

	A findig.App that works with application/json data.

This app is pre-configured to parse incoming application/json data,
output application/json data by default and convert errors to
application/json responses.

	Parameters:	
	indent – The number of spaces to indent by when outputting
JSON. By default, no indentation is used.

	encoder_cls – A json.JSONEncoder [https://docs.python.org/3/library/json.html#json.JSONEncoder] subclass that should be
used to serialize data into JSON. By default, an encoder that
converts all mappings to JSON objects and all other iterables to
JSON lists in addition to the normally supported simplejson types
(int, float, str) is used.

	autolist – Same as the autolist parameter in
findig.App.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Findig core modules

findig.content — Formatters, parsers and error handlers

These are helper implementations of content-handling ‘functions’ for
parsing, formatting and error-handling. The module exposes
Parser, Formatter and ErrorHandler respectively,
each of which acts like a function but introduces some additional
semantics.

Although this is the default behavior, Findig applications are not
required to use to tools provided by this module and may use any callable
in their place.

Note

Instances of Formatter and Parser require an
active request context to work when called.

	
class findig.content.ErrorHandler[source]

	A generic implementation of a error handler ‘function’.

A ErrorHandler collects handler functions for specific
exception types, so that when it is called, it looks up the
appropriate handler for the exception that it is called with.
The handler used is the closest superclass of the exception’s type.
If no handler was registered for the exception, then it is raised
again.

	
register(err_type, handler)[source]

	Register a handler function for a particular exception type and
its subclasses.

	Parameters:	err_type – A type of Exception

	Type:	BaseException or subclass.

	Handler:	A function that will handle errors of the given type.

This method is also usable as a decorator factory:

handler = ErrorHandler()
@handler.register(ValueError)
def handle_value_err(e):
 # Handle a value error
 pass

	
class findig.content.Formatter[source]

	A generic implementation of a formatter ‘function’.

A Formatter collects handler functions for specific mime-types,
so that when it is called, it looks up the the appropriate function
to call in turn, according to the mime-type specified by the request’s
Accept header.

	
register(mime_type, handler, default=False)

	Register a handler function for a particular content-type.

	Parameters:	
	mime_type – A content type.

	handler – A handler function for the given content type.

	default – Whether the handler should be used for requests
which don’t specify a preferred content-type. Only one default
content type may be given, so if default=True is set
multiple times, only the last one takes effect.

Tip

This method can also be used as a generator factory.

	
class findig.content.Parser[source]

	A generic implementation of a parser ‘function’.

A Parser collects handler functions for specific mime-types,
so that when it is called, it looks up the the appropriate function
to call in turn, according to the mime-type specified by the request’s
Content-Type header.

	
register(mime_type, handler, default=False)

	Register a handler function for a particular content-type.

	Parameters:	
	mime_type – A content type.

	handler – A handler function for the given content type.

	default – Whether the handler should be used for requests
which don’t specify a preferred content-type. Only one default
content type may be given, so if default=True is set
multiple times, only the last one takes effect.

Tip

This method can also be used as a generator factory.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Findig core modules

findig.context — Request context variables

This module stores request context variables. That is, variables whose
values are assigned during the handling of a request and then cleared
immediately after the request is done.

Important

With exception of ctx, all of the variables documented
here are proxies to attributes of ctx. For example, app is a
proxy to ctx.app.

	
findig.context.ctx = <werkzeug.local.Local object>

	A global request context local that can be used by anyone to store
data about the current request. Data stored on this object will be
cleared automatically at the end of each request and call only be
seen on the same thread that set the data. This means that data
accessed through this object will only ever be relevant to the current
request that is being processed.

	
findig.context.app = <LocalProxy unbound>

	The findig.App instance that responded to the request.

	
findig.context.request = <LocalProxy unbound>

	An object representing the current request and a subclass of
findig.App.request_class.

	
findig.context.url_adapter = <LocalProxy unbound>

	An object representing a werkzeug.routing.MapAdapter [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.MapAdapter] for
the current reques that can be used to build URLs.

	
findig.context.dispatcher = <LocalProxy unbound>

	The Dispatcher that registered the
resource that the current request is directed to.

	
findig.context.resource = <LocalProxy unbound>

	The AbstractResource that the current
request is directed to.

	
findig.context.url_values = <LocalProxy unbound>

	A dictionary of values that have been extracted from the request path
by matching it against a URL rule.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Findig core modules

findig.data_model — Data access for Findig applications

This module defines data models, which implement data access for a
particular resource. In a typical Findig application, each resource has
an AbstractDataModel attached which has functions defined
implementing the data operations that are supported by that resource.

By default, Resources have a
DataModel attached, but this can be replaced with any concrete
AbstractDataModel.

	
class findig.data_model.AbstractDataModel[source]

	Bases: collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]

An object responsible for managing the data for a specific resource.
Essentially, it is a mapping of data operations to the functions
that perform.

The following data operations (and their signatures) are supported:

	
	
read()

	Retrieve the data for the resource.

	
	
write(data)

	Replace the resource’s existing data with the new data. If
the resource doesn’t exist yet, create it.

	
	
delete()

	Completely obliterate a resource’s data; in general the
resource should be thought to no longer exist after this
occurs.

	
	
make(data)

	Create a child resource.

	Returns:	A mapping that can identify the created child (i.e.,
a key).

To implement this abstract base class, do either of the following:

	Implement methods on your subclass with the names
of the data operations you want your model to support. For example,
the following model implements read and write actions:

class ReadWriteModel(AbstractDataModel):
 def read():
 '''Perform backend read.'''

 def write(new_data):
 '''Perform backend write.'''

	Re-implement the mapping interface on your subclasses, such that
instances will map from a data operation (str) to a function that
implements it. This requires implementing __iter__,
__len__ and __getitem__ at a minimum. For an example,
take a look at the source code for this class.

	
class findig.data_model.DataModel[source]

	Bases: findig.data_model.AbstractDataModel, collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]

A generic, concrete implementation of AbstractDataModel

This class is implemented as a mutable mapping, so implementation
functions for data operations can be set, accessed and deleted
using the mapping interface:

>>> dm = DataModel()
>>> dm['read'] = lambda: ()
>>> 'read' in dm
True

Also, be aware that data model instances can be called to return
a decorator for a specific data operation:

>>> @dm('write')
... def write_some_data(data):
... pass
...
>>> dm['write'] == write_some_data
True

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Findig core modules

findig.dispatcher – Low-level dispatchers for Findig applications

This low-level module defines the Dispatcher class,
from which findig.App derives.

	
class findig.dispatcher.Dispatcher(formatter=None, parser=None, error_handler=None, pre_processor=None, post_processor=None)[source]

	A Dispatcher creates resources and routes requests to them.

	Parameters:	
	formatter – A function that converts resource data to a string
string suitable for output. It returns a 2-tuple: (mime_type, output).
If not given, a generic findig.content.Formatter is used.

	parser – A function that parses request input and returns a
2-tuple: (mime_type, data). If not given, a generic
findig.content.Parser.

	error_handler – A function that converts an exception to a
Response [http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.BaseResponse]. If not given,
a generic findig.content.ErrorHandler is used.

	pre_processor – A function that is called on request data just
after is is parsed.

	post_processor – A function that is called on resource data
just before it is formatted.

This class is fairly low-level and shouldn’t be instantiated directly in
application code. It does however serve as a base for findig.App.

	
formatter

	If a formatter function was given to the
constructor, then that is used. Otherwise, a generic
findig.content.Formatter is used.

	
parser

	The value that was passed for parser to the constructor.
If no argument for parser was given to the constructor, then
a generic findig.content.Parser is used.

	
error_handler

	The value that was passed for error_handler to the constructor,
or if None was given, then a generic
findig.content.ErrorHandler.

	
response_class

	A class that is used to construct responses after they’re
returned from formatters.

alias of Response

	
build_rules()[source]

	Return a generator for all of the url rules collected by the
Dispatcher.

	Return type:	Iterable of werkzeug.routing.Rule [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule]

Note

This method will ‘freeze’ resource names; do not change
resource names after this function is invoked.

	
dispatch()[source]

	Dispatch the current request to the appropriate resource, based on
which resource the rule applies to.

This function requires an active request context in order to work.

	
resource(wrapped, **args)[source]

	Create a findig.resource.Resource instance.

	Parameters:	wrapped – A wrapped function for the resource. In most cases,
this should be a function that takes named
route arguments for the resource and returns a
dictionary with the resource’s data.

The keyword arguments are passed on directly to the constructor
for Resource, with the exception that name will default to
{module}.{name} of the wrapped function if not given.

This method may also be used as a decorator factory:

@dispatcher.resource(name='my-very-special-resource')
def my_resource(route, param):
 return {'id': 10, ... }

In this case the decorated function will be replaced by a
Resource instance that wraps it. Any keyword arguments
passed to the decorator factory will be handed over to the
Resource constructor. If no keyword arguments
are required, then @resource may be used instead of
@resource().

Note

If this function is used as a decorator factory, then
a keyword parameter for wrapped must not be used.

	
route(resource, rulestr, **ruleargs)[source]

	Add a route to a resource.

Adding a URL route to a resource allows Findig to dispatch
incoming requests to it.

	Parameters:	
	resource (Resource or function) – The resource that the route will be created for.

	rulestr (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URL rule, according to
werkzeug’s specification [http://werkzeug.pocoo.org/docs/routing/#routing].

See werkzeug.routing.Rule [http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule] for valid rule parameters.

This method can also be used as a decorator factory to assign
route to resources using declarative syntax:

@route("/index")
@resource(name='index')
def index_generator():
 return (...)

	
unrouted_resources

	A list of resources created by the dispatcher which have no
routes to them.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Findig core modules

findig.resource — Classes for representing API resources

	
class findig.resource.Resource(wrapped=None, lazy=None, name=None, model=None, formatter=None, parser=None, error_handler=None)[source]

	Bases: findig.resource.AbstractResource

A concrete implementation of AbstractResource.

This accepts keyword arguments only.

	Parameters:	
	wrapped – A function which the resource wraps; it
typically returns the data for that particular
resource.

	lazy – Indicates whether the wrapped resource function
returns lazy resource data; i.e. data is not
retrieved when the function is called, but at some
later point when the data is accessed. Setting this
allows Findig to evaluate the function’s return
value after all resources have been declared to
determine if it returns anything useful (for
example, a :class:DataRecord which can be used as
a model).

	name – A name that uniquely identifies the resource.
If not given, it will be randomly generated.

	model – A data-model that describes how to read and write
the resource’s data. By default, a generic
findig.data_model.DataModel is attached.

	formatter – A function that should be used to format the
resource’s data. By default, a generic
findig.content.Formatter is attached.

	parser – A function
that should be used to parse request content
for the resource. By default, a generic
findig.content.Parser is attached.

	error_handler – A function that should be used to convert
exception into Responses [http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.BaseResponse].
By default, a findig.content.ErrorHandler is used.

	
model

	The value that was passed for model to the constructor, or
if None was given, a DataModel.

	
formatter

	If a formatter function was given to the
constructor, then that is used. Otherwise, a generic
findig.content.Formatter is used.

	
parser

	The value that was passed for parser to the constructor.
If no argument for parser was given to the constructor, then
a generic findig.content.Parser is used.

	
error_handler

	The value that was passed for error_handler to the constructor,
or if None was given, then a generic
findig.content.ErrorHandler.

	
collection(wrapped=None, **args)[source]

	Create a Collection instance

	Parameters:	wrapped – A wrapped function for the collection. In most
cases, this should be a function that returns an iterable of
resource data.

The keyword arguments are passed on to the constructor for
:class:Collection, except that if no name is given, it defaults
to {module}.{name} of the wrapped function.

This function may also be used as a decorator factory:

@resource.collection(include_urls=True)
def mycollection(self):
 pass

The decorated function will be replaced in its namespace by a
Collection that wraps it. Any keyword arguments
passed to the decorator factory will be handed over to the
Collection constructor. If no keyword arguments
are required, then @collection may be used instead of
@collection().

	
compose_model(wrapper_args=None)[source]

	

	Noindex:	

Make a composite model for the resource by combining a
lazy data handler (if present) and the model specified on
the resource.

	Parameters:	wrapper_args – A set of arguments to call the wrapped
function with, so that a lazy data handler
can be retrieved. If none is given, then
fake data values are passed to the wrapped
function. In this case, the data-model
returned must not be used.

	Returns:	A data-model for the resource

This is an internal method.

	
get_supported_methods(model=None)[source]

	Return a set of HTTP methods supported by the resource.

	Parameters:	model – The data-model to use to determine what methods
supported. If none is given, a composite data model
is built from self.model and any data source
returned by the resource’s wrapped function.

	
handle_request(request, wrapper_args)[source]

	Dispatch a request to a resource.

See AbstractResource.handle_request() for accepted
parameters.

	
class findig.resource.AbstractResource[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a very low-level web resource to be handled by Findig.

Findigs apps are essentially a collection of routed resources. Each
resource is expected to be responsible for handling some requests to
a set of one or more URLs. When requests to such a URL is received,
Findig looks-up what resource is responsible, and hands the request
object over to the resource for processing.

Custom implementations of the abstract class are possible. However,
this class operates at a very low level in the Findig stack, so it is
recommended that they are only used for extreme cases where those
low-level operations are needed.

In addition to the methods defined here, resources should have a
name attribute, which is a string that uniquely identifies it within
the app. Optional parser and formatter attributes corresponding to
findig.content.AbstractParser and
finding.content.AbstractFormatter instances respectively,
will also be used if added.

	
build_url(values)[source]

	Build a URL for this resource.

The URL is built using the current WSGI environ, so this function
must be called from inside a request context. Furthermore, the
resource must have already been routed to in the current app
(see: findig.dispatcher.Dispatcher.route()), and this method
must be passed values for any variables in the URL rule used to
route to the resource.

	Parameters:	values (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Values for the variables in a URL rule used to
route to the resource.

Example:

>>> from findig import App
>>> app = App()
>>> @app.route("/index/<int:num>")
... @app.resource
... def item(num):
... return {}
...
>>> with app.test_context(path="/index/1"):
... item.build_url(dict(num=4))
...
'/index/4'

This method is not abstract.

	
get_supported_methods()[source]

	Return a Python set of HTTP methods to be supported by the resource.

	
handle_request(request, url_values)[source]

	Handle a request to one of the resource URLs.

	Parameters:	
	request (Request, which
in turn is a subclass of
werkzeug.wrappers.Request [http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Request]) – An object encapsulating information about the
request. It is the same as
findig.context.request.

	url_values – A dictionary of arguments that have been parsed
from the URL routes, which may help to better
identify the request. For example, if a resource
is set up to handle URLs matching the rule
/items/<int:id> and a request is sent to
/items/43, then url_values will be
{'id': 43}.

	Returns:	This function should return data that will be transformed
into an HTTP response. This is usually a dictionary, but
depending on how formatting is configured, it may be
any object the output formatter configured for the
resource will accept.

	
class findig.resource.Collection(of, include_urls=False, bindargs=None, **keywords)[source]

	Bases: findig.resource.Resource

A Resource that acts as a collection of other resources.

	Parameters:	
	of (Resource) – The type of resource to be collected.

	include_urls – If True, the collection will attempt to
insert a url field on each of the child items that it returns.
Note that this only works if the child already has enough information
in its fields to build a url (i.e., if the URL for the child
contains an :id fragment, then the child must have an id
field, which is then used to build its URL.

	bindargs – A dictionary mapping field names to URL variables.
For example: a child resource may have the URL variable :id,
but have a corresponding field named user_id; the appropriate
value for bindargs in this case would be {'user_id': 'id'}.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Findig core modules

findig.wrappers — The Findig Request object

	
class findig.wrappers.Request(environ, populate_request=True, shallow=False)[source]

	Bases: werkzeug.wrappers.Request [http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Request]

A default request class for wrapping WSGI environs.

	
input[source]

	Request content that has been parsed into a python object.
This is a read-only property.

	
max_content_length = 10485760

	The maximum allowed content-length for the requests is set to
10MB by default.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

Higher-level tools

The findig.tools package contains modules each implementing
higher-level tools for use on Findig applications and resources. They’re
completely optional, but using them should make writing a Findig
application significantly easier. These
tools are implemented in such a way that they can be easily dropped into
any Findig application to provide additional functionality without making
any underlying changes. The tools available are documented in the
following pages:

	findig.tools.counter — Hit counters for apps and resources
	Counter example

	findig.tools.protector — Authorization tools
	Scopes

	Protectors

	GateKeepers

	findig.tools.protector.scopeutil — tools for working with auth scopes

	findig.tools.validator — Request input validators

	Abstract classes for higher-level tools
	Data sets

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Higher-level tools

findig.tools.counter — Hit counters for apps and resources

The findig.tools.counter module defines the Counter tool,
which can be used as a hit counter for your application. Counters can
count hits to a particular resource, or globally within the application.

	
class findig.tools.counter.Counter(app=None, duration=-1, storage=None)[source]

	A Counter counter keeps track of hits (requests) made on an
application and its resources.

	Parameters:	
	app (findig.App, or a subclass like findig.json.App.) – The findig application whose requests the counter will track.

	duration (datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] or int representing seconds.) – If given, the counter will only track hits that
occurred less than this duration before the current time.
Otherwise, all hits are tracked.

	storage – A subclass of AbstractLog that should be used
to store hits. By default, the counter will use a thread-safe,
in-memory storage class.

	
attach_to(app)[source]

	Attach the counter to a findig application.

Note

This is called automatically for any app that is passed
to the counter’s constructor.

By attaching the counter to a findig application, the counter is
enabled to wrap count hits to the application and fire callbacks.

	Parameters:	app (findig.App, or a subclass like
findig.json.App.) – The findig application whose requests the counter will
track.

	
partition(name, fgroup)[source]

	Create a partition that is tracked by the counter.

A partition can be thought of as a set of mutually exclusive
groups that hits fall into, such that each hit can only belong to
one group in any single partition. For example, if we
partition a counter by the IP address of the requesting clients,
each possible client address can be thought of as one group, since
it’s only possible for any given hit to come from just one of those
addresses.

For every partition, a grouping function must be supplied to help
the counter determine which group a hit belongs to. The
grouping function takes a request as its parameter, and returns
a hashable result that identifies the group. For example, if we
partition by IP address, our grouping function can either return
the IP address’s string representation or 32-bit (for IPv4)
integer value.

By setting up partitions, we can query a counter for the number of
hits belonging to a particular group in any of our partitions. For
example, if we wanted to count the number GET requests, we could
partition the counter on the request method (here our groups would
be GET, PUT, POST, etc) and query the counter for the number of
hits in the GET group in our request method partition:

counter = Counter(app)

Create a partition named 'method', which partitions our
hits by the request method (in uppercase).
counter.partition('method', lambda request: request.method.upper())

Now we can query the counter for hits belonging to the 'GET'
group in our 'method' partition
hits = counter.hits()
number_of_gets = hits.count(method='GET')

	Parameters:	
	name – The name for our partition.

	fgroup – The grouping function for the partition. It must]
be a callable that takes a request and returns a hashable
value that identifies the group that the request falls into.

This method can be used as a decorator factory:

@counter.partition('ip')
def getip(request):
 return request.remote_addr

A counter may define more than one partition.

	
every(n, callback, after=None, until=None, resource=None)[source]

	Call a callback every n hits.

	Parameters:	
	resource – If given, the callback will be called on every
n hits to the resource.

	after – If given, the callback won’t be called until after
this number of hits; it will be called on the (after+1)th hit
and every nth hit thereafter.

	until – If given, the callback won’t be called after this
number of hits; it will be called up to and including this
number of hits.

If partitions have been set up (see partition()), additional
keyword arguments can be given as {partition_name}={group}. In
this case, the hits are filtered down to those that match the
partition before issuing callbacks. For example, we can run some
code on every 100th GET request after the first 1000 like this:

counter.partition('method', lambda r: r.method.upper())

@counter.every(100, after=1000, method='GET')
def on_one_hundred_gets(method):
 pass

Furthermore, if we wanted to issue a callback on every 100th
request of any specific method, we can do this:

@counter.every(100, method=counter.any)
def on_one_hundred(method):
 pass

The above code is different from simply every(100, callback)
in that every(100, callback) will call the callback on every
100th request received, while the example will call the callback
of every 100th request of a particular method (every 100th GET,
every 100th PUT, every 100th POST etc).

Whenever partition specs are used to register callbacks,
then the callback must take a named argument matching the
partition name, which will contain the partition group for the
request that triggered the callback.

	
at(n, callback, resource=None)[source]

	Call a callback on the nth hit.

	Parameters:	resource – If given, the callback will be called on every
n hits to the resource.

Like every(), this function can be called with partition
specifications.

This function is equivalent to every(1, after=n-1, until=n)

	
after_every(n, callback, after=None, until=None, resource=None)[source]

	Call a callback after every n hits.

This method works exactly like every() except that
callbacks registered with every() are called before the
request is handled (and therefore can throw errors that interupt
the request) while callbacks registered with this function are
run after a request has been handled.

	
after(n, callback, resource=None)[source]

	Call a callback after the nth hit.

This method works exactly like at() except that
callbacks registered with at() are called before the
request is handled (and therefore can throw errors that interupt
the request) while callbacks registered with this function are
run after a request has been handled.

	
hits(resource=None)[source]

	Get the hits that have been recorded by the counter.

The result can be used to query the number of
total hits to the application or resource, as well as the number
of hits belonging to specific partition groups:

Get the total number of hits
counter.hits().count()

Get the number of hits belonging to a partition group
counter.hits().count(method='GET')

The result is also an iterable of (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime],
partition_mapping) objects.

	Parameters:	resource – If given, only hits for this resource will be
retrieved.

	
class findig.tools.counter.AbstractLog(duration, resource)[source]

	Abstract base for a storage class for hit records.

This module provides a thread-safe, in-memory concrete implementation
that is used by default.

	
__init__(duration, resource)[source]

	Initialize the abstract log

All implementations must support this signature for their
constructor.

	Parameters:	
	duration (datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] or int representing seconds.) – The length of time for which the log should
store records. Or if -1 is given, the log should store all
records indefinitely.

	resource – The resource for which the log will store records.

	
__iter__()[source]

	Iter the stored hits.

Each item iterated must be a 2-tuple in the form
(datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], partitions).

	
count(**partition_spec)[source]

	Return the number of hits stored.

If no keyword arguments are given, then the total number of hits
stored should be returned. Otherwise, keyword arguments must be
in the form {partition_name}={group}. See
Counter.partition().

	
track(partitions)[source]

	Store a hit record

	Parameters:	partitions – A mapping from partition names to the group
that the hit matches for the partition. See
Counter.partition().

Counter example

Counters can be used to implement more complex tools. For example,
a simple rate-limiter can be implemented using the counter API:

from findig.json import App
from findig.tools.counter import Counter
from werkzeug.exceptions import TooManyRequests

app = App()

Using the counter's duration argument, we can set up a
rate-limiter to only consider requests in the last hour.
counter = counter(app, duration=3600)

LIMIT = 1000

@counter.partition('ip')
def get_ip(request):
 return request.remote_addr

@counter.every(1, after=1000, ip=counter.any)
def after_thousandth(ip):
 raise TooManyRequests("Limit exceeded for: {}".format(ip))

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Higher-level tools

findig.tools.protector — Authorization tools

For many web API resources, it is desirable to restrict access to only
specific users or clients that have been authorized to use them. The tools in
this module provide one mechanism for putting such restrictions in place.

The Protector is the core tool provided here. Its instances collect
information about resources that should be guarded against authorized access,
and on each request, it checks that requests to those resources present a valid
authorization.

The precise authorization mechanism used by the protector is controlled by
the GateKeeper abstract class for which an application developer may
supply their own concrete instance. Alternatively, some protectors
supply their own gatekeepers (example: BasicProtector
uses RFC 2617#section-2 [https://tools.ietf.org/html/rfc2617.html#section-2] as its authorization mechanism).

Scopes

Protectors provide implicit support for ‘scopes’ (an idea
borrowed from OAuth 2, with some enhancements). While completely optional,
their use provides a way allow access to only portions of an API while
denying access to others.

An authorization (commonly represented by a token) may have some scopes
(identified by application chosen strings)
associated with it which define what portions of the API that a request
using the authorization can access; only resources belong to one of the
scopes associated with the authorization, or resources that belong to
no scopes are accessible. Protectors provide a mechanism for marking a
guarded resource as belonging to a scope.

For example, an application may provide a resource guarded under the scope
foobar. In order to access the resource, then a request must present
authorization that encapsulates the foobar scope, otherwise the request
is denied.

Tip

While recommended, using scopes is optional. In fact, some
authorization mechanisms do not provide a way to encapsulate
scopes. To provide scope support for a custom authentication
mechanism that encapsulates scopes, see GateKeeper.

Findig extends authorization scopes with special semantics that can affect
the way they are used by a protector. The grammar for authorization scopes
is given below:

auth_scope ::= scope_name["+"permissions]
scope_name ::= scope_fragment{"/"scope_fragment}
permissions ::= permission{permission}
permission ::= "c" | "r" | "u" | "d"

scope_fragment is token that does not include the ‘+’ or ‘/’ characters.
Whenever a permission is omitted, the ‘r’ is permission is implied.

Permissions are used to control which actions an authorization permits on
the resources falling into its scope, according to this table:

	Action
	Permission

	HEAD
	r

	GET
	r

	POST
	c

	PUT
	c and u

	DELETE
	d

So for example, an authorization with the scope foobar+rd can read
and delete resources under the foobar scope.

The ‘/’ character is used to denote sub-scopes (and super-scopes). foo/bar
is considered a sub-scope of foo (and foo a super-scope of
foo/bar), and so on. This is useful, because by default if a request
possesses authorization for a super-scope, then this implicitly authorizes
its sub-scopes as well.

Scopes attached to a resource follow a simpler grammar:

resource_scope ::= scope_name

In other words, the permissions are omitted (because the protector multiplexes
which permission is required from the request method).

The findig.tools.protector.scopeutil module provides some functions
for working with scopes.

Protectors

	
class findig.tools.protector.Protector(app=None, subscope_separator="/", gatekeeper=None)[source]

	A protector is responsible for guarding access to a restricted
resource:

from findig import App

app = App()
protector = Protector(app)
protector.guard(resource)

	Parameters:	
	app – A findig application instance.

	subscope_separator – A separator used to denote sub-scopes.

	gatekeeper – A concrete implementation of GateKeeper. If
not provided, the protector will deny all requests to its guarded
resources.

	
attach_to(app)[source]

	Attach the protector to a findig application.

Note

This is called automatically for any app that is passed
to the protector’s constructor.

By attaching the protector to a findig application, the protector is
enabled to intercept requests made to the application, performing authorization
checks as needed.

	Parameters:	app (findig.App, or a subclass like
findig.json.App.) – A findig application whose requests the protector will
intercept.

	
guard(resource[, scope[, scope[, ...]]])[source]

	Guard a resource against unauthorized access. If given, the
scopes
will be used to protect the resource (similar to oauth) such that
only requests with the appropriate scope
will be allowed through.

If this function is called more than once, then a grant by any
of the specifications will allow the request to access the resource.
For example:

This protector will allow requests to res with BOTH
"user" and "friends" scope, but it will also allow
requests with only "foo" scope.
protector.guard(res, "user", "friends")
protector.guard(res, "foo")

A protector can also be used to decorate resources for guarding:

@protector.guard
@app.route("/foo")
def foo():
 # This resource is guarded with no scopes; any authenticated
 # request will be allowed through.
 pass

@protector.guard("user/email_addresses")
@app.route("/bar")
def bar():
 # This resource is guarded with "user/email_addresses" scope,
 # so that only requests authorized with that scope will be
 # allowed to access the resource.
 pass

@protector.guard("user/phone_numbers", "user/contact")
@app.route("/baz")
def baz():
 # This resource is guarded with both "user/phone_numbers" and
 # "user/contact" scope, so requests must be authorized with both
 # to access this resource.
 pass

NOTE: Depending on the value passed for 'subscope_separator' to the
protector's constructor, authenticated requests authorized with "user" scope
will also be allowed to access all of these resources (default behavior).

	
authenticated_client

	Get the client id of the authenticated client for the current request, or None.

	
authenticated_user

	Get the username/id of the authenticated user for the current request.

	
authorized_scope

	Get the a list of authorized scopes for the current request.

	
class findig.tools.protector.BasicProtector(app=None, subscope_separator='/', auth_func=None, realm='guarded')[source]

	A Protector that implements HTTP Basic Auth.

While straightforward, this protector has a few security considerations:

	Credentials are transmitted in plain-text. If you must use this
protector, then at the very least the HTTPS protocol should be
used.

	Credentials are transmitted with each request. It requires that clients
either store user credentials, or prompt the user for their credentials at
frequent intervals (possibly every request).

	This protector offers no scoping support; a grant from this protector
allows unlimited access to any resource that it guards.

	
auth_func(fauth)[source]

	Supply an application-defined function that performs authentication.

The function has the signature fauth(username:str, password:str) -> bool
and should return whether or not the credentials given authenticate
successfully.

auth_func is usable as a decorator:

@protector.auth_func
def check_credentials(usn, pwd):
 user = db.get_obj(usn)
 return user.password == pwd

GateKeepers

Each Protector should be supplied with a GateKeeper
that extracts any authorization information embedded in
a request. Protector uses a default gatekeeper which denies all
requests made to its guarded resources.

An application may provide its own gatekeeper that implements the
desired authorization mechanism. That’s done by implementing the
GateKeeper abstract base class.

	
class findig.tools.protector.GateKeeper[source]

	To implement a gatekeeper, implement at least check_auth() and
get_username().

	
check_auth()[source]

	Try to perform an authorization check using the request context variables.

Perform the authorization check using whatever mechanism that the
gatekeeper’s authorization is handled. If authorization fails, then
an Unauthorized [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.Unauthorized] error should be raised.

Return a ‘grant’ that will be used to query the gatekeeper about the
authorization.

	
get_clientid(grant)[source]

	Return the client that sent the request to the grant. (Optional)

	
get_scopes(grant)[source]

	Return a list of scopes that the grant is authorized with. (Optional)

	
get_username(grant)[source]

	Return the username/id of the user that authorized the grant.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Higher-level tools

findig.tools.protector.scopeutil — tools for working with auth scopes

These functions are used protectors to implement scoping.

	
findig.tools.protector.scopeutil.check_encapsulates(root, child, sep='/')[source]

	Check that one scope item encapsulates of another.

A scope item encapsulates when it is a super-scope
of the other, and when its permissions are a superset of the other’s
permissions.

This is used to implement sub-scopes, where permissions granted on
a broad scope can be used to imply permissions for a sub-scope. By default,
sub-scopes are denoted by a preceeding ‘/’.

For example, a scope permission if user+r is granted to an agent, then
that agent is also implied to have been granted user/emails+r,
user/friends+r and so on.

	Parameters:	
	root – A super-scope

	child – A potential sub-scope

	sep – The separator that is used to denote sub-scopes.

	
findig.tools.protector.scopeutil.compress_scope_items(scopes, default_mode='r')[source]

	Return a set of equivalent scope items that may
be smaller in size.

Input scope items must be a normalized set of scope
items.

	
findig.tools.protector.scopeutil.normalize_scope_items(scopes, default_mode='r', raise_err=True)[source]

	Return a set of scope items that have been normalized.

A normalized set of scope items is one where every item
is in the format:

norm_scope ::= scope_name+permission

Input scope items are assumed to be ‘r’ by default. Example,
the scope item user will normalize to user+r.

Input scope items that contain more than one permission are
expanded to multiple scope items. For example the scope item
user+ud is expanded to (user+u, user+d).

Note that permissions are atomic, and none implies another.
For example, user+u will expand to user+u and NOT
(user+r, user+u).

	Parameters:	
	scopes – A list of scope items.

	default_mode – The permission that should be assumed if one is omitted.

	raise_err – If True, malformed scopes will raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]. Otherwise
they are omitted.

	
findig.tools.protector.scopeutil.ANY = {'$^&#THISISGARBAGE#*@&@#$*@$&DFDF#&#@&@&##*&@DHJGDJH#@&*^@#*+crud'}

	A special scope item that implicitly encapsulates all other scope items

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Higher-level tools

findig.tools.validator — Request input validators

The findig.tools.validator module exposes the Validator
which can be used to validate an application or request’s input data.

Validators work by specifying a converter for each field in the
input data to be validated:

validator = Validator(app)

@validator.enforce(id=int)
@app.route("/test")
def resource():
 pass

@resource.model("write")
def write_resource(data):
 assert isinstance(data['id'], int)

If the converter fails to convert the field’s value, then a
400 BAD REQUEST error is sent back.

Converters don’t have to be functions; they can be a singleton list
containing another converter, indicating that the field is expected to
be a list of items for which that converter works:

@validator.enforce(ids=[int])
@app.route("/test2")
def resource2():
 pass

@resource2.model("write")
def write_resource(data):
 for id in data['ids']:
 assert isinstance(id, int)

Converters can also be string specifications corresponding to a
pre-registered converter and its arguments. All of
werkzeug’s
builtin converters and their arguments [http://werkzeug.pocoo.org/docs/routing/#builtin-converters]
and their arguments are pre-registered and thus usable:

@validator.enforce(foo='any(bar,baz)', cid='string(length=3)')
@app.route("/test3")
def resource3():
 pass

@resource3.model("write")
def write_resource(data):
 assert data['foo'] in ('bar', 'baz')
 assert len(data['cid']) == 3

	
exception findig.tools.validator.ValidationFailed[source]

	Raised whenever a Validator fails to validate one or more
fields.

This exception is a subclass of werkzeug.exceptions.BadRequest [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.BadRequest], so if allowed
to bubble up, findig will send a 400 BAD REQUEST
response automatically.

Applications can, however, customize the way this exception is
handled:

from werkzeug.wrappers import Response

This assumes that the app was not supplied a custom error_handler
function as an argument.
If a custom error_handler function is being used, then
do a test for this exception type inside the function body
and replicate the logic
@app.error_handler.register(ValidationFailed)
def on_validation_failed(e):
 # Construct a response based on the error received
 msg = "Failed to convert input data for the following fields: "
 msg += str(e.fields)
 return Response(msg, status=e.status)

	
fields

	A list of field names for which validation has failed. This will
always be a complete list of failed fields.

	
validator

	The Validator that raised the exception.

	
exception findig.tools.validator.UnexpectedFields(fields, validator)[source]

	Bases: findig.tools.validator.ValidationFailed

Raised whenever a resource receives an unexpected input field.

	
exception findig.tools.validator.MissingFields(fields, validator)[source]

	Bases: findig.tools.validator.ValidationFailed

Raised when a resource does not receive a required field in its input.

	
exception findig.tools.validator.InvalidFields(fields, validator)[source]

	Bases: findig.tools.validator.ValidationFailed

Raised when a resource receives a field that the validator can’t convert.

	
class findig.tools.validator.Validator(app=None, include_collections=True)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A higher-level tool to be used to validate request input data.

	Parameters:	
	app (findig.App) – The Findig application that the validator is attached to.

	include_collections – If True, any validation rules set on any
resource will also be used for any Collection
that collects it. Even when this argument is set, inherited rules can still
be overridden by declaring rules specifically for the collection.

Validators are only capable of validating request input data (i.e.,
data received as part of the request body). To validate URL fragments,
consider using converters in your URL rules. See
werkzeug’s routing reference [http://werkzeug.pocoo.org/docs/0.10/routing/#rule-format].

Validators work by specifying converters for request input fields.
If a converter is specified, the validator will use it to convert the
field and replace it with the converted value. See enforce() for
more about converters.

	
attach_to(app)[source]

	Hook the validator into a Findig application.

Doing so allows the validator to inspect and replace incoming
input data. This is called automatically for an app passed to the
validator’s constructor, but can be called for additional app
instances. This function should only be called once per application.

	Parameters:	app (findig.App) – The Findig application that the validator is attached to.

	
static date(format[, format[, ...]])[source]

	Create a function that validates a date field.

	Parameters:	format – A date/time format according to
datetime.datetime.strptime() [https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime]. If more than one formats are
passed in, the generated function will try each format in order
until one of them works on the field (or until there are no formats
left to try).

Example:

>>> func = Validator.date("%Y-%m-%d %H:%M:%S%z")
>>> func("2015-07-17 09:00:00+0400")
datetime.datetime(2015, 7, 17, 9, 0, tzinfo=datetime.timezone(datetime.timedelta(0, 14400)))
>>> func("not-a-date")
Traceback (most recent call last):
 ...
ValueError: time data 'not-a-date' does not match format '%Y-%m-%d %H:%M:%S%z'

>>> func = Validator.date("%Y-%m-%d %H:%M:%S%z", "%Y-%m-%d")
>>> func("2015-07-17")
datetime.datetime(2015, 7, 17, 0, 0)

	
enforce(resource, **validation_spec)[source]

	Register a validation specification for a resource.

The validation specification is a set of field=converter
arguments linking an input field name to a converter that should
be used to validate the field. A converter can be any of the following:

	collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable] (including functions) – This can
be a simple type such as int [https://docs.python.org/3/library/functions.html#int] or uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID], but
any function or callable can work. It should take a field value and
convert it to a value of the desired type. If it throws an error,
then findig will raise a BadRequest [http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.BadRequest]
exception.

Example:

Converts an int from a valid string base 10 representation:
validator.enforce(resource, game_id=int)

Converts to a float from a valid string
validator.enforce(resource, duration=float)

	str [https://docs.python.org/3/library/stdtypes.html#str] – If a string is given, then it is interpreted as a
converter specification. A converter specification includes the
converter name and optionally arguments for pre-registered
converters. The following converters are pre-registered by
default (you may notice that they correspond to the URL rule
converters available for werkzeug):

	
string(minlength=1, length=None, maxlength=None)

	This converter will accept a string.

	Parameters:	
	length – If given, it will indicate a fixed length field.

	minlength – The minimum allowed length for the field.

	maxlength – The maximum allowed length for the field.

	
any(*items)

	This converter will accept only values from the variable
list of options passed as the converter arguments. It’s
useful for limiting a field’s value to a small set of possible
options.

	
int(fixed_digits=0, min=None, max=None)

	This converter will accept a string representation of a
non-negative integer.

	Parameters:	
	fixed_digits – The number of fixed digits in the field.
For example, set this to 3 to convert '001' but not
'1'. The default is a variable number of digits.

	min – The minimum allowed value for the field.

	max – The maximum allowed value for the field.

	
float(min=None, max=None)

	This converter will accept a string representation of a
non-negative floating point number.

	Parameters:	
	min – The minimum allowed value for the field.

	max – The maximum allowed value for the field.

	
uuid()

	This converter will accept a string representation of a
uuid and convert it to a uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID].

Converters that do not need arguments can omit the parentheses
in the converter specification.

Examples:

Converts a 4 character string
validator.enforce(resource, student_id='string(length=10)')

Converts any of these string values: 'foo', 1000, True
validator.enforce(resource, field='any(foo, 1000, True)')

Converts any non-negative integer
validator.enforce(resource, game_id='int')

and any float <1000
validator.enforce(resource, duration='float(max=1000)')

Important

Converter specifications in this form cannot
match strings that contain forward slashes. For example,
‘string(length=2)’ will fail to match ‘/e’ and
‘any(application/json,html)’ will fail to
match ‘application/json’.

	or, list [https://docs.python.org/3/library/stdtypes.html#list] – This must be a singleton list containing a
converter. When this is given, the validator will treat the field
like a list and use the converter to convert each item.

Example:

Converts a list of integers
validator.enforce(resource, games=[int])

Converts a list of uuids
validator.enforce(resource, components=['uuid'])

Converts a list of fixed length strings
validator.enforce(resource, students=['string(length=10)'])

This method can be used as a decorator factory for resources:

@validator.enforce(uid=int, friends=[int])
@app.route("/")
def res():
 return {}

Converter specifications given here are only checked when a field is
present; see restrict() for specifying required fields.

Warning

Because of the way validators are hooked up, registering
new specifications after the first request has run might cause
unexpected behavior (and even internal server errors).

	
enforce_all(**validation_spec)[source]

	Register a global validation specification.

This function works like enforce(), except that the
validation specification is registered for all resources instead
of a single one.

Global validation specifications have lower precedence than
resource specific ones.

	
static regex(pattern, flags=0, template=None)[source]

	Create a function that validates strings against a regular expression.

>>> func = Validator.regex("boy")
>>> func("boy")
'boy'
>>> func("That boy")
Traceback (most recent call last):
 ...
ValueError: That boy
>>> func("boy, that's handy.")
Traceback (most recent call last):
 ...
ValueError: boy, that's handy.

If you supply a template, it is used to construct a return
value by doing backslash substitution:

>>> func = Validator.regex("(male|female)", template=r"Gender: \1")
>>> func("male")
'Gender: male'
>>> func("alien")
Traceback (most recent call last):
 ...
ValueError: alien

	
restrict([field, [field, [...,]]]strip_extra=True)[source]

	Restrict the input data to the given fields

	Parameters:	
	field – A field name that should be allowed. An asterisk at the
start of the field name indicates a required field (asterisks at
the start of field names can be escaped with another asterisk
character). This parameter can be used multiple times to indicate
different fields.

	strip_extra – Controls the behavior upon encountering a field
not contained in the list, during validation. If True, the
field will be removed. Otherwise, a UnexpectedFields is
raised.

Once this method is called, any field names that do not appear in the
list are disallowed.

	
validate(data)[source]

	Validate the data with the validation specifications that have
been collected.

This function must be called within an active request context in
order to work.

	Parameters:	data (mapping, or object with gettable/settable fields) – Input data

	Raises:	ValidationFailed if one or more fields could not be
validated.

This is an internal method.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Higher-level tools

Abstract classes for higher-level tools

Some higher-level tools aren’t explicitly implemented by Findig;
rather abstract classes for how they are expected to behave are defined
so that support libraries and applications can provide their own
implementations.

Data sets

Data sets are one example of higher level tools without an explicit
implementation. Abstractly, they’re collections of resource data that also
encapsulate an implicit data model (i.e., instructions on data access).
This makes them a powerful replacement for explicitly defining a
data-model for each resource, since a resource function can instead return
a data set and have Findig construct a resource from it:

@app.route("/items/<int:id>")
@app.resource(lazy=True)
def item(id):
 return items().fetch(id=id)

@app.route("/items")
@item.collection(lazy=True)
def items():
 return SomeDataSet()

Findig currently includes one concrete implementation:
findig.extras.redis.RedisSet.

	
class findig.tools.dataset.AbstractDataSet[source]

	An abstract data set is a representation of a collection of items.

Concrete implementations must provide at least an implementation
for __iter__, which should return an iterator of
AbstractRecord instances.

	
fetch(**search_spec)[source]

	Fetch an AbstractRecord matching the search specification.

If this is called outside a request, a lazy record is returned
immediately (i.e., the backend isn’t hit until the record is
explicitly queried).

	
fetch_now(**search_spec)[source]

	Fetch an AbstractRecord matching the search specification.

Unlike fetch(), this function will always hit the backend.

	
filtered(**search_spec)[source]

	Return a filtered view of this data set.

Each keyword represents the name of a field that is checked, and
the corresponding argument indicates what it is checked against. If
the argument is Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable], then it should
be a predicate that returns True if the field is valid (be aware
that the predicate will passed be None if the field isn’t
present on the record), otherwise it is compared against the field
for equality.

	
limit(count, offset=0)[source]

	Return a limited version of this data set.

	Parameters:	
	offset – The number of items to skip from the beginning

	count – The maximum number of items to return

	
sorted(*sort_spec, descending=False)[source]

	Return a sorted view of this data set.

The method takes a variable number of arguments that specify its
sort specification.

If a single, callable argument is provided, it is taken as a
sort key for a record.

Otherwise, the arguments are taken as field names to be sorted,
in the same order given in the argument list. Records that omit
one of these fields appear later in the sorted set than
those that don’t.

	
class findig.tools.dataset.MutableDataSet[source]

	An abstract data set that can add new child elements.

	
add(data)[source]

	Add a new child item to the data set.

	
class findig.tools.dataset.AbstractRecord[source]

	An representation of an item belonging to a collection.

	
read()[source]

	Read the record’s data and return a mapping of fields to
values.

	
class findig.tools.dataset.MutableRecord[source]

	An abstract record that can update or delete itself.

	
close_edit_block(token)[source]

	End a transaction started by start_edit_block().

	
delete()[source]

	Delete the record’s data.

	
edit_block()[source]

	A context manager for grouping a chain of edits together.
Some subclasses may not support performing reads inside an
edit block.

	
patch(add_data, remove_fields)[source]

	Update the record’s data with the new data.

	
start_edit_block()[source]

	Start a transaction to the backend.

Backend edits made through this object should be grouped together
until close_edit_block() is called.

	Returns:	A token that is passed into close_edit_block().

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

Added features enabled by third-party libraries

The modules in the package provide some extra functionality, but
rely on additional third-party libraries being present in order to work.

	findig.extras.redis — Some tools that are backed by Redis

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Findig 0.1.0 documentation

 	Added features enabled by third-party libraries

findig.extras.redis — Some tools that are backed by Redis

Note

This module requires redis-py and will raise an
ImportError [https://docs.python.org/3/library/exceptions.html#ImportError] if redis-py is not installed.

	
class findig.extras.redis.RedisSet(key=None, client=None, index_size=4)[source]

	Bases: findig.tools.dataset.MutableDataSet

A RedisSet is an AbstractDataSet that stores its items in
a Redis database (using a Sorted Set to represent the collection,
and a sorted set to represent items).

	Parameters:	
	key – The base key that should be used for the sorted set. If
not given, one is deterministically generated based on the current
resource.

	client – A redis.StrictRedis instance that should be
used to communicate with the redis server. If not given, a default
instance is used.

	index_size – The number of bytes to use to index items in the
set (per item).

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Findig 0.1.0 documentation

General Utilities

	
class findig.utils.DataPipe(*funcs)[source]

	An object that folds data over a set of functions.

	Parameters:	funcs – A variable list of functions. Each function must take
one parameter and return a single value.

Calling this object with data will pass the data through each one of
the functions that is has collected, using the result of one function
as the argument for the next function. For example, if the data pipe
dpipe contains the functions [f1, f2, ..., fn], then
dpipe(data) is equivalent to fn(...(f2(f1(data)))).

	
stage(func)[source]

	Append a function to the data pipes internal list.

This returns the function that it is called with, so it can be
used as a decorator.

	
class findig.utils.extremum(direction=1)[source]

	A class whose instances are always ordered at one extreme.

	Parameters:	direction – If positive, always order as greater than every
other object. If negative, orders as less than
every other object.

	
findig.utils.tryeach(funcs, *args, **kwargs)[source]

	Call every item in a list a functions with the same arguments,
until one of them does not throw an error. If all of the functions
raise an error, then the error from the last function will be
re-raised.

	Parameters:	funcs – An iterable of callables.

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Findig 0.1.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 findig	

 	
 	
 findig.content	

 	
 	
 findig.context	

 	
 	
 findig.data_model	

 	
 	
 findig.dispatcher	

 	
 	
 findig.extras	

 	
 	
 findig.extras.redis	

 	
 	
 findig.resource	

 	
 	
 findig.tools	

 	
 	
 findig.tools.counter	

 	
 	
 findig.tools.protector	

 	
 	
 findig.tools.protector.scopeutil	

 	
 	
 findig.tools.validator	

 	
 	
 findig.utils	

 	
 	
 findig.wrappers	

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Findig 0.1.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

_

 	

 	__init__() (findig.tools.counter.AbstractLog method)

 	

 	__iter__() (findig.tools.counter.AbstractLog method)

A

 	

 	AbstractDataModel (class in findig.data_model)

 	AbstractDataSet (class in findig.tools.dataset)

 	AbstractLog (class in findig.tools.counter)

 	AbstractRecord (class in findig.tools.dataset)

 	AbstractResource (class in findig.resource)

 	add() (findig.tools.dataset.MutableDataSet method)

 	after() (findig.tools.counter.Counter method)

 	after_every() (findig.tools.counter.Counter method)

 	ANY (in module findig.tools.protector.scopeutil)

 	

 	App (class in findig)

 	

 	(class in findig.json)

 	app (in module findig.context)

 	at() (findig.tools.counter.Counter method)

 	attach_to() (findig.tools.counter.Counter method)

 	

 	(findig.tools.protector.Protector method)

 	(findig.tools.validator.Validator method)

 	auth_func() (findig.tools.protector.BasicProtector method)

 	authenticated_client (findig.tools.protector.Protector attribute)

 	authenticated_user (findig.tools.protector.Protector attribute)

 	authorized_scope (findig.tools.protector.Protector attribute)

B

 	

 	BasicProtector (class in findig.tools.protector)

 	build_context() (findig.App method)

 	

 	build_rules() (findig.dispatcher.Dispatcher method)

 	build_url() (findig.resource.AbstractResource method)

C

 	

 	check_auth() (findig.tools.protector.GateKeeper method)

 	check_encapsulates() (in module findig.tools.protector.scopeutil)

 	cleanup_hook() (findig.App method)

 	close_edit_block() (findig.tools.dataset.MutableRecord method)

 	Collection (class in findig.resource)

 	collection() (findig.resource.Resource method)

 	

 	compose_model() (findig.resource.Resource method)

 	compress_scope_items() (in module findig.tools.protector.scopeutil)

 	context() (findig.App method)

 	count() (findig.tools.counter.AbstractLog method)

 	Counter (class in findig.tools.counter)

 	ctx (in module findig.context)

D

 	

 	DataModel (class in findig.data_model)

 	DataPipe (class in findig.utils)

 	date() (findig.tools.validator.Validator static method)

 	delete() (findig.tools.dataset.MutableRecord method)

 	

 	dispatch() (findig.dispatcher.Dispatcher method)

 	Dispatcher (class in findig.dispatcher)

 	dispatcher (in module findig.context)

E

 	

 	edit_block() (findig.tools.dataset.MutableRecord method)

 	enforce() (findig.tools.validator.Validator method)

 	enforce_all() (findig.tools.validator.Validator method)

 	error_handler (findig.dispatcher.Dispatcher attribute)

 	

 	(findig.resource.Resource attribute)

 	

 	ErrorHandler (class in findig.content)

 	every() (findig.tools.counter.Counter method)

 	extremum (class in findig.utils)

F

 	

 	fetch() (findig.tools.dataset.AbstractDataSet method)

 	fetch_now() (findig.tools.dataset.AbstractDataSet method)

 	fields (findig.tools.validator.ValidationFailed attribute)

 	filtered() (findig.tools.dataset.AbstractDataSet method)

 	findig (module)

 	findig.content (module)

 	findig.context (module)

 	findig.data_model (module)

 	findig.dispatcher (module)

 	findig.extras (module)

 	findig.extras.redis (module)

 	

 	findig.resource (module)

 	findig.tools (module)

 	findig.tools.counter (module)

 	findig.tools.protector (module)

 	findig.tools.protector.scopeutil (module)

 	findig.tools.validator (module)

 	findig.utils (module)

 	findig.wrappers (module)

 	Formatter (class in findig.content)

 	formatter (findig.dispatcher.Dispatcher attribute)

 	

 	(findig.resource.Resource attribute)

G

 	

 	GateKeeper (class in findig.tools.protector)

 	get_clientid() (findig.tools.protector.GateKeeper method)

 	get_scopes() (findig.tools.protector.GateKeeper method)

 	

 	get_supported_methods() (findig.resource.AbstractResource method)

 	

 	(findig.resource.Resource method)

 	get_username() (findig.tools.protector.GateKeeper method)

 	guard() (findig.tools.protector.Protector method)

H

 	

 	handle_request() (findig.resource.AbstractResource method)

 	

 	(findig.resource.Resource method)

 	

 	hits() (findig.tools.counter.Counter method)

I

 	

 	input (findig.wrappers.Request attribute)

 	

 	InvalidFields

L

 	

 	limit() (findig.tools.dataset.AbstractDataSet method)

M

 	

 	max_content_length (findig.wrappers.Request attribute)

 	MissingFields

 	model (findig.resource.Resource attribute)

 	

 	MutableDataSet (class in findig.tools.dataset)

 	MutableRecord (class in findig.tools.dataset)

N

 	

 	normalize_scope_items() (in module findig.tools.protector.scopeutil)

P

 	

 	Parser (class in findig.content)

 	parser (findig.dispatcher.Dispatcher attribute)

 	

 	(findig.resource.Resource attribute)

 	partition() (findig.tools.counter.Counter method)

 	

 	patch() (findig.tools.dataset.MutableRecord method)

 	Protector (class in findig.tools.protector)

R

 	

 	read() (findig.tools.dataset.AbstractRecord method)

 	RedisSet (class in findig.extras.redis)

 	regex() (findig.tools.validator.Validator static method)

 	register() (findig.content.ErrorHandler method)

 	

 	(findig.content.Formatter method)

 	(findig.content.Parser method)

 	Request (class in findig.wrappers)

 	request (in module findig.context)

 	request_class (findig.App attribute)

 	

 	Resource (class in findig.resource)

 	resource (in module findig.context)

 	resource() (findig.dispatcher.Dispatcher method)

 	response_class (findig.dispatcher.Dispatcher attribute)

 	restrict() (findig.tools.validator.Validator method)

 	
 RFC

 	

 	RFC 2617#section-2

 	route() (findig.dispatcher.Dispatcher method)

S

 	

 	sorted() (findig.tools.dataset.AbstractDataSet method)

 	stage() (findig.utils.DataPipe method)

 	

 	start_edit_block() (findig.tools.dataset.MutableRecord method)

 	startup_hook() (findig.App method)

T

 	

 	test_context() (findig.App method)

 	track() (findig.tools.counter.AbstractLog method)

 	

 	tryeach() (in module findig.utils)

U

 	

 	UnexpectedFields

 	unrouted_resources (findig.dispatcher.Dispatcher attribute)

 	

 	url_adapter (in module findig.context)

 	url_values (in module findig.context)

V

 	

 	validate() (findig.tools.validator.Validator method)

 	ValidationFailed

 	

 	Validator (class in findig.tools.validator)

 	validator (findig.tools.validator.ValidationFailed attribute)

 Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

 _static/file.png

_static/plus.png

_static/up.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/json.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.json

from collections.abc import Iterable, Mapping
import json
import re
import traceback

from werkzeug.exceptions import BadRequest, HTTPException
from werkzeug.routing import BuildError as URLBuildError
from werkzeug.wrappers import Response

from findig import App as App_
from findig.content import *
from findig.context import ctx, request
from findig.dispatcher import Dispatcher as Dispatcher_
from findig.resource import AbstractResource, Collection, Resource

class CustomEncoder(json.JSONEncoder):
 """
 A custom :class:`json.JSONEncoder` that goes a bit further to coerce
 data into json.

 Any Python mapping is converted to a javascript object.

 Any Python iterable that isn't a mapping is converted to a list.

 The encoder also provides an object representation for
 :class:`~findig.resource.AbstractResource`.

 """

 #: A pattern that matches the variable parts of a URL rule.
 value_pattern = re.compile("<(?:.*?:)?(.*?)>")

 def default(self, obj):
 if isinstance(obj, Mapping):
 return dict(obj)
 elif isinstance(obj, Iterable):
 return list(obj)
 elif isinstance(obj, AbstractResource):
 rule = next(ctx.app.iter_resource_rules(obj))

 d = {
 'methods': rule.methods,
 }

 try:
 url = ctx.url_adapter.build(obj.name)
 d['url'] = url
 except URLBuildError:
 url = self.value_pattern.sub(r":\1", rule.rule)
 d['url_rule'] = url
 d['url'] = None

 if isinstance(obj, Resource):
 d['is_strict_collection'] = isinstance(obj, Collection)

 return d

 else:
 return super().default(obj)

class JSONMixin:
 def __init__(self, indent=None, encoder_cls=None, **args):
 self.indent = indent
 self.encoder_cls = CustomEncoder if encoder_cls is None else encoder_cls
 super().__init__(**args)

 self.error_handler = ErrorHandler()
 self.error_handler.register(BaseException, self._respond_error)
 self.error_handler.register(HTTPException, self._respond_http_error)

 self.formatter = Formatter()
 self.formatter.register('application/json', self.serialize, default=True)

 self.parser = Parser()
 self.parser.register('application/json', self.deserialize, default=True)

 def _respond_error(self, err):
 # TODO: log error
 traceback.print_exc()
 return self.make_response({"message": "internal error"}, status=500)

 def _respond_http_error(self, http_err):
 response = http_err.get_response(request)

 headers = response.headers
 del headers['Content-Type']
 del headers['Content-Length']

 return self.make_response({"message": http_err.description},
 status=response.status,
 headers=response.headers)

 def make_response(self, data, **args):
 """
 make_response(data, status=None, headers=None)

 Construct a JSON response from the given data.
 """
 args.pop("mimetype", None)
 args.pop("content_type", None)

 jsonified = self.serialize(data)
 return Response(jsonified, mimetype="application/json", **args)

 def serialize(self, data):
 jsonified = json.dumps(data, indent=self.indent, cls=self.encoder_cls)
 return jsonified

 def deserialize(self, byte_string, **opts):
 byte_string = b"" if byte_string is None else byte_string
 try:
 jsonified = byte_string.decode(opts.get('charset', 'utf8'))
 data = json.loads(jsonified) if jsonified else {}
 except UnicodeDecodeError:
 raise BadRequest("Cannot decode request data")
 except ValueError as err:
 raise BadRequest("Can't parse request data {}".format(err))
 else:
 if isinstance(data, dict):
 return request.parameter_storage_class(data)
 else:
 return data

class Dispatcher(JSONMixin, Dispatcher_):
 """A :class:`Dispatcher` for use with JSON applications."""

[docs]class App(JSONMixin, App_):
 """
 App(indent=None, encoder_cls=None, autolist=False)

 A :class:`findig.App` that works with application/json data.

 This app is pre-configured to parse incoming ``application/json`` data,
 output ``application/json`` data by default and convert errors to
 ``application/json`` responses.

 :param indent: The number of spaces to indent by when outputting
 JSON. By default, no indentation is used.
 :param encoder_cls: A :class:`json.JSONEncoder` subclass that should be
 used to serialize data into JSON. By default, an encoder that
 converts all mappings to JSON objects and all other iterables to
 JSON lists in addition to the normally supported simplejson types
 (int, float, str) is used.
 :param autolist: Same as the *autolist* parameter in
 :class:`findig.App`.

 """

__all__ = ["Dispatcher", "App"]

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/dispatcher.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.dispatcher

from functools import singledispatch
import warnings
import traceback

from werkzeug.exceptions import HTTPException
from werkzeug.routing import Rule
from werkzeug.wrappers import Response, BaseResponse

from findig.content import ErrorHandler, Formatter, Parser
from findig.context import ctx
from findig.resource import Resource, AbstractResource
from findig.utils import DataPipe

[docs]class Dispatcher:
 """
 A :class:`Dispatcher` creates resources and routes requests to them.

 :param formatter: A function that converts resource data to a string
 string suitable for output. It returns a 2-tuple: *(mime_type, output)*.
 If not given, a generic :class:`findig.content.Formatter` is used.
 :param parser: A function that parses request input and returns a
 2-tuple: *(mime_type, data)*. If not given, a generic
 :class:`findig.content.Parser`.
 :param error_handler: A function that converts an exception to a
 :class:`Response <werkzeug.wrappers.BaseResponse>`. If not given,
 a generic :class:`findig.content.ErrorHandler` is used.
 :param pre_processor: A function that is called on request data just
 after is is parsed.
 :param post_processor: A function that is called on resource data
 just before it is formatted.

 This class is fairly low-level and shouldn't be instantiated directly in
 application code. It does however serve as a base for :class:`findig.App`.

 """

 #: A class that is used to construct responses after they're
 #: returned from formatters.
 response_class = Response

 def __init__(self, formatter=None, parser=None, error_handler=None,
 pre_processor=None, post_processor=None):
 self.route = singledispatch(self.route)
 self.route.register(str, self.route_decorator)

 if error_handler is None:
 error_handler = ErrorHandler()
 error_handler.register(BaseException, self._handle_exception)
 error_handler.register(HTTPException, self._handle_http_exception)

 if parser is None:
 parser = Parser()

 if formatter is None:
 formatter = Formatter()
 formatter.register('text/plain', str, default=True)

 self.formatter = formatter
 self.parser = parser
 self.error_handler = error_handler
 self.pre_processor = DataPipe() if pre_processor is None else pre_processor
 self.post_processor = DataPipe() if post_processor is None else post_processor

 self.resources = {}
 self.routes = []
 self.endpoints = {}

 def _handle_exception(self, err):
 # TODO: log error
 traceback.print_exc()
 return Response("An internal application error has been logged.",
 status=500)

 def _handle_http_exception(self, http_err):
 response = http_err.get_response(ctx.request)

 headers = response.headers
 del headers['Content-Type']
 del headers['Content-Length']

 return Response(http_err.description, status=response.status,
 headers=response.headers)

[docs] def resource(self, wrapped=None, **args):
 """
 resource(wrapped, **args)
 Create a :class:`findig.resource.Resource` instance.

 :param wrapped: A wrapped function for the resource. In most cases,
 this should be a function that takes named
 route arguments for the resource and returns a
 dictionary with the resource's data.

 The keyword arguments are passed on directly to the constructor
 for :class:`Resource`, with the exception that *name* will default to
 {module}.{name} of the wrapped function if not given.

 This method may also be used as a decorator factory::

 @dispatcher.resource(name='my-very-special-resource')
 def my_resource(route, param):
 return {'id': 10, ... }

 In this case the decorated function will be replaced by a
 :class:`Resource` instance that wraps it. Any keyword arguments
 passed to the decorator factory will be handed over to the
 :class:`Resource` constructor. If no keyword arguments
 are required, then ``@resource`` may be used instead of
 ``@resource()``.

 .. note:: If this function is used as a decorator factory, then
 a keyword parameter for *wrapped* must not be used.

 """
 def decorator(wrapped):
 args['wrapped'] = wrapped
 args.setdefault(
 'name', "{0.__module__}.{0.__qualname__}".format(wrapped))
 resource = Resource(**args)
 self.resources[resource.name] = resource
 return resource

 if wrapped is not None:
 return decorator(wrapped)

 else:
 return decorator

[docs] def route(self, resource, rulestr, **ruleargs):
 """
 Add a route to a resource.

 Adding a URL route to a resource allows Findig to dispatch
 incoming requests to it.

 :param resource: The resource that the route will be created for.
 :type resource: :class:`Resource` or function
 :param rulestr: A URL rule, according to
 :ref:`werkzeug's specification <werkzeug:routing>`.
 :type rulestr: str

 See :py:class:`werkzeug.routing.Rule` for valid rule parameters.

 This method can also be used as a decorator factory to assign
 route to resources using declarative syntax::

 @route("/index")
 @resource(name='index')
 def index_generator():
 return (...)

 """
 if not isinstance(resource, AbstractResource):
 resource = self.resource(resource)

 self.routes.append((resource, rulestr, ruleargs))

 return resource

 def route_decorator(self, rulestr, **ruleargs):
 #See :meth:`route`.
 def decorator(resource):
 # Collect the rule
 resource = self.route(resource, rulestr, **ruleargs)

 # return the resource
 return resource

 return decorator

[docs] def build_rules(self):
 """
 Return a generator for all of the url rules collected by the
 :class:`Dispatcher`.

 :rtype: Iterable of :class:`werkzeug.routing.Rule`

 .. note:: This method will 'freeze' resource names; do not change
 resource names after this function is invoked.

 """
 self.endpoints.clear()

 # Refresh the resource dict so that up-to-date resource names
 # are used in dictionaries
 self.resources = dict((r.name, r) for r in self.resources.values())

 # Build the URL rules
 for resource, string, args in self.routes:
 # Set up the callback endpoint
 args.setdefault('endpoint', resource.name)
 self.endpoints[args['endpoint']] = resource

 # And the supported methods
 supported_methods = resource.get_supported_methods()
 restricted_methods = set(
 map(str.upper, args.get('methods', supported_methods)))
 args['methods'] = supported_methods.intersection(restricted_methods)
 # warn about unsupported methods

 unsupported_methods = list(set(restricted_methods) - supported_methods)
 if unsupported_methods:
 warnings.warn(
 "Error building rule: {string}\n"
 "The following HTTP methods have been declared, but "
 "are not supported by the data model for {resource.name}: "
 "{unsupported_methods}.".format(**locals())
)

 # Initialize the rule, and yield it
 yield Rule(string, **args)

 def get_resource(self, rule):
 return self.endpoints[rule.endpoint]

[docs] def dispatch(self):
 """
 Dispatch the current request to the appropriate resource, based on
 which resource the rule applies to.

 This function requires an active request context in order to work.
 """
 # TODO: document request context variables.
 request = ctx.request
 url_values = ctx.url_values
 resource = ctx.resource

 ctx.response = response = {'headers': {}} # response arguments

 try:
 data = resource.handle_request(request, url_values)
 response = {k:v for k,v in response.items()
 if k in ('status', 'headers')}

 if isinstance(data, (self.response_class, BaseResponse)):
 return data

 elif data is not None:
 process = DataPipe(
 getattr(resource, 'post_processor', None),
 self.post_processor
)
 data = process(data)

 format = Formatter.compose(
 getattr(resource, 'formatter', Formatter()),
 self.formatter
)
 mime_type, data = format(data)
 response['mimetype'] = mime_type
 response['response'] = data

 return self.response_class(**response)
 except BaseException as err:
 return self.error_handler(err)

 @property
 def unrouted_resources(self):
 """
 A list of resources created by the dispatcher which have no
 routes to them.
 """
 routed = set()
 for resource in self.endpoints.values():
 if resource.name in self.resources:
 routed.add(resource.name)
 else:
 return list(map(self.resources.get,
 set(self.resources) - routed))

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 Source code for findig

"""
The core Findig namespace defines the Findig :class:App class, which
is essential to building Findig applications. Every :class:App is
capable of registering resources as well as URL routes that point to them,
and is a WSGI callable that can be passed to any WSGI complaint server.

"""

from contextlib import contextmanager, ExitStack
from functools import wraps
from os.path import join, dirname
from threading import Lock
import traceback

from werkzeug.local import LocalManager
from werkzeug.routing import Map, RuleFactory
from werkzeug.utils import cached_property
from werkzeug.wrappers import BaseResponse

from findig.context import *
from findig.dispatcher import Dispatcher
from findig.wrappers import Request

with open(join(dirname(__file__), "VERSION")) as fh:
 __version__ = fh.read().strip()

[docs]class App(Dispatcher):
 #: The class used to wrap WSGI environments by this App instance.
 request_class = Request
 # This is used internally to track and clean up context variables
 local_manager = LocalManager()

 def __init__(self, autolist=False):
 """
 Create a new App instance.

 :param autolist: If true, a "lister" resource is created and
 registered at the URL ``/``. This resource will list all
 of the resources registered with the application which have
 URL rules.

 """
 super(App, self).__init__()

 self.local_manager.locals.append(ctx)
 self.context_hooks = []
 self.cleanup_hooks = []
 self.startup_hooks = []
 self._startup_hook_lock = Lock()
 self._startup_hooks_run = False

 self.startup_hooks.append(self.__build_url_map)

 if autolist:
 self.route(self.iter_resources, "/")

[docs] def context(self, func):
 """
 Register a request context manager for the application.

 A request context manager is a function that yields once, that is
 used to wrap request contexts. It is called at the beginning of a
 request context, during which it yields control to Findig, and
 regains control sometime after findig processes the request. If
 the function yields a value, it is made available as an
 attribute on :data:`findig.context.ctx` with the same name as the
 function.

 Example::

 >>> from findig.context import ctx
 >>> from findig import App
 >>>
 >>> app = App()
 >>> items = []
 >>> @app.context
 ... def meaning():
 ... items.extend(["Life", "Universe", "Everything"])
 ... yield 42
 ... items.clear()
 ...
 >>> with app.test_context(create_route=True):
 ... print("The meaning of", end=" ")
 ... print(*items, sep=", ", end=": ")
 ... print(ctx.meaning)
 ...
 The meaning of Life, Universe, Everything: 42
 >>> items
 []

 """
 self.context_hooks.append(contextmanager(func))
 return func

[docs] def cleanup_hook(self, func):
 """
 Register a function that should run after each request in the
 application.
 """
 self.cleanup_hooks.append(func)
 return func

[docs] def startup_hook(self, func):
 """
 Register a function to be run before the very first request in
 the application.
 """
 self.startup_hooks.append(func)
 return func

 def __cleanup(self):
 for hook in self.cleanup_hooks:
 try:
 hook()
 except:
 pass
 else:
 self.local_manager.cleanup()

 def __run_startup_hooks(self):
 if not self._startup_hooks_run:
 with self._startup_hook_lock:
 for hook in self.startup_hooks:
 hook()
 else:
 self._startup_hooks_run = True

[docs] def build_context(self, environ):
 """
 Start a request context.

 :param environ: A WSGI environment.
 :return: A context manager for the request. When the context
 manager exits, the request context variables are destroyed and
 all cleanup hooks are run.

 .. note:: This method is intended for internal use; Findig will
 call this method internally on its own. It is *not* re-entrant
 with a single request.

 """
 self.__run_startup_hooks()

 ctx.app = self
 ctx.url_adapter = adapter = self.url_map.bind_to_environ(environ)
 ctx.request = self.request_class(environ) # ALWAYS set this after adapter

 rule, url_values = adapter.match(return_rule=True)
 dispatcher = self #self.get_dispatcher(rule)

 # Set up context variables
 ctx.url_values = url_values
 ctx.dispatcher = dispatcher
 ctx.resource = dispatcher.get_resource(rule)

 context = ExitStack()
 context.callback(self.__cleanup)
 # Add all the application's context managers to
 # the exit stack. If any of them return a value,
 # we'll add the value to the application context
 # with the function name.
 for hook in self.context_hooks:
 retval = context.enter_context(hook())
 if retval is not None:
 setattr(ctx, hook.__name__, retval)
 return context

[docs] def test_context(self, create_route=False, **args):
 """
 Make a mock request context for testing.

 A mock request context is generated using the arguments here.
 In other words, context variables are set up and callbacks are
 registered. The returned object is intended to be used as a
 context manager::

 app = App()
 with app.test_context():
 # This will set up request context variables
 # that are needed by some findig code.
 do_some_stuff_in_the_request_context()

 # After the with statement exits, the request context
 # variables are cleared.

 This method is really just a shortcut for creating a fake
 WSGI environ with :py:class:`werkzeug.test.EnvironBuilder` and
 passing that to :meth:`build_context`. It takes the very same
 keyword parameters as :py:class:`~werkzeug.test.EnvironBuilder`;
 the arguments given here are passed directly in.

 :keyword create_route: Create a URL rule routing to a mock resource,
 which will match the path of the mock request. This must be set to True if the mock
 request being generated doesn't already have a route registered
 for the request path, otherwise this method will raise a
 :py:class:`werkzeug.exceptions.NotFound` error.

 :return: A context manager for a mock request.
 """
 from werkzeug.test import EnvironBuilder

 if create_route:
 path = args.get('path', '/')
 self.route(lambda: {}, path)

 ctx.testing = True
 builder = EnvironBuilder(**args)
 return self.build_context(builder.get_environ())

 def __call__(self, environ, start_response):
 # Set up the application context and run the
 # app inside it.
 try:
 with self.build_context(environ):
 response = ctx.dispatcher.dispatch()
 except BaseException as err:
 try:
 response = self.error_handler(err)
 except:
 traceback.print_exc()
 response = BaseResponse(None, status=500)
 finally:
 return response(environ, start_response)

 def iter_resource_rules(self, resource):
 yield from self.url_map.iter_rules(resource.name)

 def iter_resources(self, adapter=None):
 # The app iters through all registered resources that have been
 # hooked up to a route, for which we can build URLs.
 endpoints = {}
 adapter = ctx.url_adapter if adapter is None else adapter

 for rule in self.url_map.iter_rules():
 endpoints[rule.endpoint] = rule

 for endpoint in endpoints:
 # TODO: implement dispatcher API
 dispatcher = self
 yield dispatcher.get_resource(endpoints[endpoint])

 def __build_url_map(self):
 self.url_map = Map([r for r in self.build_rules()])

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 All modules for which code is available

		findig

		findig.content

		findig.data_model

		findig.dispatcher

		findig.extras.redis

		findig.json

		findig.resource

		findig.tools.counter

		findig.tools.dataset

		findig.tools.protector

		findig.tools.protector.scopeutil

		findig.tools.validator

		findig.utils

		findig.wrappers

		werkzeug.local

		werkzeug.wrappers

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/data_model.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.data_model

"""
This module defines data models, which implement data access for a
particular resource. In a typical Findig application, each resource has
an :class:`AbstractDataModel` attached which has functions defined
implementing the data operations that are supported by that resource.

By default, :class:`Resources <findig.resource.Resource>` have a
:class:`DataModel` attached, but this can be replaced with any concrete
:class:`AbstractDataModel`.
"""

from abc import ABCMeta, abstractmethod
from collections.abc import Callable, Mapping, MutableMapping

from findig.tools.dataset import MutableDataSet, MutableRecord

[docs]class AbstractDataModel(Mapping, metaclass=ABCMeta):
 """
 An object responsible for managing the data for a specific resource.
 Essentially, it is a mapping of data operations to the functions
 that perform.

 The following data operations (and their signatures) are supported:

 * .. function:: read()
 :noindex:

 Retrieve the data for the resource.

 * .. function:: write(data)
 :noindex:

 Replace the resource's existing data with the new data. If
 the resource doesn't exist yet, create it.

 * .. function:: delete()
 :noindex:

 Completely obliterate a resource's data; in general the
 resource should be thought to no longer exist after this
 occurs.

 * .. function:: make(data)
 :noindex:

 Create a child resource.

 :return: A mapping that can identify the created child (i.e.,
 a key).

 To implement this abstract base class, do *either* of the following:

 * Implement methods on your subclass with the names
 of the data operations you want your model to support. For example,
 the following model implements read and write actions::

 class ReadWriteModel(AbstractDataModel):
 def read():
 '''Perform backend read.'''

 def write(new_data):
 '''Perform backend write.'''

 * Re-implement the mapping interface on your subclasses, such that
 instances will map from a data operation (str) to a function that
 implements it. This requires implementing ``__iter__``,
 ``__len__`` and ``__getitem__`` at a minimum. For an example,
 take a look at the source code for this class.
 """

 all_actions = ('read', 'write', 'delete', 'make')

 def compose(self, other):
 if isinstance(other, Mapping):
 composite = dict(other)
 composite.update(self)
 return DictDataModel(composite)
 else:
 return DictDataModel(self)

 def __get_impl_actions(self):
 return {action: func
 for action, func in
 ((a, getattr(self, a, None)) for a in self.all_actions)
 if isinstance(func, Callable)}

 def __iter__(self):
 yield from self.__get_impl_actions()

 def __len__(self):
 return len(self.__get_impl_actions())

 def __getitem__(self, k):
 return self.__get_impl_actions()[k]

class DictDataModel(dict, AbstractDataModel):
 def __init__(self, mapping):
 self.update(mapping)

[docs]class DataModel(AbstractDataModel, MutableMapping):
 """
 A generic, concrete implementation of :class:`AbstractDataModel`

 This class is implemented as a mutable mapping, so implementation
 functions for data operations can be set, accessed and deleted
 using the mapping interface::

 >>> dm = DataModel()
 >>> dm['read'] = lambda: ()
 >>> 'read' in dm
 True

 Also, be aware that data model instances can be called to return
 a decorator for a specific data operation::

 >>> @dm('write')
 ... def write_some_data(data):
 ... pass
 ...
 >>> dm['write'] == write_some_data
 True

 """
 def __init__(self):
 self.registry = {}

 def __setitem__(self, action, func):
 if action not in self.all_actions:
 raise ValueError("Unsupported action: {}".format(action))

 elif not isinstance(func, Callable):
 raise TypeError("Item must be callable.")

 else:
 setattr(self, action, func)

 def __delitem__(self, action):
 if action not in self.all_actions:
 raise ValueError("Unsupported action: {}".format(action))

 elif not hasattr(self, action):
 raise KeyError(action)

 else:
 delattr(self, action)

 def __call__(self, action):
 def decorator(func):
 self[action] = func
 return func

 return decorator

class DataSetDataModel(AbstractDataModel):
 """
 A concrete data model that wraps a data set.

 :param dataset: A data set that is wrapped.
 :type dataset: Iterable, Mapping, :py:class:`MutableDataSet`
 or :py:class:`MutableDataRecord`

 """
 def __init__(self, dataset):
 self.ds = dataset

 def __iter__(self):
 yield 'read'

 if isinstance(self.ds, MutableDataSet):
 yield 'make'

 if isinstance(self.ds, MutableRecord):
 yield 'write'
 yield 'delete'

 def __len__(self):
 length = 1
 if isinstance(self.ds, MutableDataSet):
 length += 1
 if isinstance(self.ds, MutableRecord):
 length += 2
 return length

 def __getitem__(self, action):
 if action == 'read':
 return lambda: self.ds
 elif action == 'make':
 return lambda data: self.ds.add(data)
 elif action == 'write':
 return lambda data: self.ds.patch(data, (), replace=True)
 elif action == 'delete':
 return lambda: self.ds.delete()

__all__ = ['AbstractDataModel', 'DictDataModel', 'DataModel', 'DataSetDataModel']

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/content.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.content

"""
These are helper implementations of content-handling 'functions' for
parsing, formatting and error-handling. The module exposes
:class:`Parser`, :class:`Formatter` and :class:`ErrorHandler` respectively,
each of which acts like a function but introduces some additional
semantics.

Although this is the default behavior, Findig applications are not
required to use to tools provided by this module and may use any callable
in their place.

.. note:: Instances of :py:class:`Formatter` and :py:class:`Parser` require an
 active request context to work when called.
"""

from abc import ABCMeta, abstractmethod
from collections.abc import Callable
from functools import partial

from werkzeug.datastructures import MIMEAccept
from werkzeug.exceptions import NotAcceptable, UnsupportedMediaType
from werkzeug.http import parse_accept_header, parse_options_header

from findig.context import ctx
from findig.utils import tryeach

class HandlerAggregator:
 def __init__(self):
 self.handlers = {}

 def register(self, key, handler=None):
 def register_handler(handler):
 self.handlers[key] = handler
 return handler

 if handler is None:
 return register_handler

 else:
 if not isinstance(handler, Callable):
 raise ValueError("Argument handler: must be callable.")

 register_handler(handler)

[docs]class ErrorHandler(HandlerAggregator):
 """
 A generic implementation of a error handler 'function'.

 A :class:`ErrorHandler` collects handler functions for specific
 exception types, so that when it is called, it looks up the
 appropriate handler for the exception that it is called with.
 The handler used is the closest superclass of the exception's type.
 If no handler was registered for the exception, then it is raised
 again.

 """

[docs] def register(self, err_type, handler=None):
 """
 Register a handler function for a particular exception type and
 its subclasses.

 :param err_type: A type of Exception
 :type: BaseException or subclass.
 :handler: A function that will handle errors of the given type.
 :type handler: func(e):NoneType

 This method is also usable as a decorator factory::

 handler = ErrorHandler()
 @handler.register(ValueError)
 def handle_value_err(e):
 # Handle a value error
 pass

 """
 if not issubclass(err_type, BaseException):
 raise ValueError("Argument 'err_type': must be an "
 "exception type.")
 return super().register(err_type, handler)

 def choose_best_handler(self, err):
 # Try to find the most specific error handler for this method
 best_htype = BaseException
 err_type = type(err)

 for htype in self.handlers:
 if issubclass(err_type, htype):
 if issubclass(htype, best_htype):
 best_htype = htype

 if best_htype in self.handlers:
 return self.handlers[best_htype]

 else:
 # Re-raise the exception
 raise err

 def __call__(self, err):
 handler = self.choose_best_handler(err)
 return handler(err)

class ContentPipe(HandlerAggregator, metaclass=ABCMeta):
 def register(self, mime_type, handler=None, default=False):
 """
 Register a handler function for a particular content-type.

 :param mime_type: A content type.
 :param handler: A handler function for the given content type.
 :param default: Whether the handler should be used for requests
 which don't specify a preferred content-type. Only one default
 content type may be given, so if ``default=True`` is set
 multiple times, only the last one takes effect.

 .. tip:: This method can also be used as a generator factory.

 """
 if mime_type.count("/") != 1:
 raise ValueError("Argument 'mime_type': doesn't appear to be a "
 "valid mime-type")
 if default:
 self.default = mime_type

 return super().register(mime_type, handler)

 def __call__(self, obj):
 mime_type, handler = self.choose_best_handler()
 return mime_type, handler(obj)

 @abstractmethod
 def choose_best_handler(self):
 pass

[docs]class Formatter(ContentPipe):
 """
 A generic implementation of a formatter 'function'.

 A :class:`Formatter` collects handler functions for specific mime-types,
 so that when it is called, it looks up the the appropriate function
 to call in turn, according to the mime-type specified by the request's
 ``Accept`` header.

 """

 def choose_best_handler(self):
 # The best handler for the formatter instance depends on the
 # request; in particular it relies on what the client has
 # indicated it can accept

 # Get the accept header
 accept_header = ctx.request.headers.get("Accept")

 if accept_header == "*/*" or accept_header is None:
 if hasattr(self, 'default'):
 return self.default, self.handlers[self.default]

 else:
 try:
 return next(iter(self.handlers.items()))
 except StopIteration:
 raise ValueError("No handlers have been registered "
 "for this formatter.")

 else:
 accept = parse_accept_header(accept_header, MIMEAccept)
 mime_type = accept.best_match(self.handlers)

 if mime_type is not None:
 return mime_type, self.handlers[mime_type]

 else:
 raise NotAcceptable

 # Parse the Accept header
 accept = parse_accept_header(
 ctx.request.headers.get("Accept", "*/*"),
 MIMEAccept
)

 mime_type = accept.best_match(self.handlers)

 if mime_type is not None:
 return mime_type, self.handlers[mime_type]

 elif "*/*" in accept.values():
 for mimetype in self.handlers:
 return self.handlers[mimetype]
 else:
 # The requesting client will accept anything, but we
 # don't have handlers at all. This is a LookupError
 raise LookupError("No formatter handlers available at "
 "all; cannot format this data.")

 else:
 # The output format that the requesting client asked for
 # isn't supported. This is NotAcceptable
 raise NotAcceptable

 @staticmethod
 def compose(first, second, *rest):
 formatters = [first, second]
 formatters.extend(rest)

 if all(map(lambda f: isinstance(f, Formatter), formatters)):
 new_formatter = Formatter()
 for inst in reversed(formatters):
 new_formatter.handlers.update(inst.handlers)
 if getattr(inst, 'default', None) is not None:
 new_formatter.default = inst.default
 return new_formatter
 else:
 return partial(tryeach, formatters)

[docs]class Parser(ContentPipe):
 """
 A generic implementation of a parser 'function'.

 A :class:`Parser` collects handler functions for specific mime-types,
 so that when it is called, it looks up the the appropriate function
 to call in turn, according to the mime-type specified by the request's
 ``Content-Type`` header.

 """
 def choose_best_handler(self):
 content_type, options = ctx.request.headers.get(
 "content-type", type=parse_options_header
)

 if content_type in self.handlers:
 return content_type, partial(self.handlers[content_type], **options)

 elif hasattr(self, 'default'):
 return self.default, partial(self.handlers[self.default], **options)

 else:
 raise UnsupportedMediaType

__all__ = "Formatter", "Parser", "ErrorHandler"

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/utils.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.utils

from abc import ABCMeta, abstractmethod
from collections.abc import Callable, Iterable
from functools import reduce
import re

stackoverflow.com/questions/elegant-python-function-to-convert-camelcase-to-camel-case/1176023#1176023
def to_snake_case(name):
 s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
 return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()

[docs]class extremum:
 """
 A class whose instances are always ordered at one extreme.

 :param direction: If positive, always order as greater than every
 other object. If negative, orders as less than
 every other object.
 """
 def __init__(self, direction=1):
 self.gt = direction >= 0

 def __eq__(self, other):
 if isinstance(other, extremum) and other.gt == self.gt:
 return True
 else:
 return False

 def __gt__(self, other):
 if isinstance(other, extremum) and other.gt:
 return False
 else:
 return self.gt

 def __lt__(self, other):
 if isinstance(other, extremum) and not other.gt:
 return False
 else:
 return not self.gt

[docs]def tryeach(funcs, *args, **kwargs):
 """
 Call every item in a list a functions with the same arguments,
 until one of them does not throw an error. If all of the functions
 raise an error, then the error from the last function will be
 re-raised.

 :param funcs: An iterable of callables.

 """
 # Call every item in the list with the arguments given until
 # one of them /does not/ raise an error. If all of the items
 # raise an error, the very last error raised will re re-raised.

 funcs = list(funcs)
 last_index = len(funcs) - 1

 if not funcs:
 raise ValueError("Argument 1: must be a non-empty iterable "
 "of functions.")

 for i, func in enumerate(funcs):
 try:
 return func(*args, **kwargs)
 except:
 if i == last_index:
 # If we are on the last function, raise the error
 raise

[docs]class DataPipe:
 """
 An object that folds data over a set of functions.

 :param funcs: A variable list of functions. Each function must take
 one parameter and return a single value.

 Calling this object with data will pass the data through each one of
 the functions that is has collected, using the result of one function
 as the argument for the next function. For example, if the data pipe
 ``dpipe`` contains the functions ``[f1, f2, ..., fn]``, then
 ``dpipe(data)`` is equivalent to ``fn(...(f2(f1(data))))``.

 """
 def __init__(self, *funcs):
 self.funcs = []

 for func in funcs:
 if isinstance(func, DataPipe):
 self.funcs.extend(func.funcs)
 elif isinstance(func, Iterable):
 self.funcs.extend(func)
 elif isinstance(func, Callable):
 self.funcs.append(func)

[docs] def stage(self, func):
 """
 Append a function to the data pipes internal list.

 This returns the function that it is called with, so it can be
 used as a decorator.

 """
 self.funcs.append(func)
 return func

 def __call__(self, data):
 return reduce(lambda x, f: f(x), self.funcs, data)

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/extras/redis.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.extras.redis

from ast import literal_eval
from collections.abc import Callable, Mapping
from contextlib import contextmanager
from time import time

import redis

from findig.context import ctx
from findig.resource import AbstractResource
from findig.tools.dataset import MutableDataSet, MutableRecord, FilteredDataSet

class IndexToken(Mapping):
 __slots__ = 'sz', 'fields'

 def __init__(self, fields, bytesize=4):
 self.fields = fields
 self.sz = bytesize

 def __str__(self):
 return ",".join("{}={!r}".format(k, self.fields[k])
 for k in sorted(self.fields))

 def __hash__(self):
 return hash(str(self)) & (2**(8*self.sz - 1) - 1)

 def __iter__(self):
 yield from self.fields

 def __len__(self):
 return len(self.fields)

 def __getitem__(self, key):
 return self.fields[key]

 @property
 def value(self):
 return hash(self).to_bytes(self.sz, 'big')

class RedisObj(MutableRecord):
 def __init__(self, key, collection=None, include_id=True):
 self.itemkey = key
 self.collection = collection
 self.include_id = include_id
 self.r = (collection.r
 if collection is not None
 else redis.StrictRedis())
 self.inblock = False

 def __repr__(self):
 return "<{name}({key!r}){suffix}>".format(
 name="redis-object" if self.collection is None else "item",
 key=self.itemkey,
 suffix="" if self.collection is None
 else " of {!r}".format(self.collection)
)

 def start_edit_block(self):
 client = self.r
 self.r = self.r.pipeline()
 self.inblock = True
 return (client, dict(self))

 def close_edit_block(self, token):
 client, old_data = token

 ret = self.r.execute()
 self.r = client

 data = dict(self)

 if self.collection is not None:
 self.collection.reindex(
 self.id,
 data,
 old_data
)

 self.invalidate(new_data=data)
 self.inblock = False

 def patch(self, add_data, remove_fields, replace=False):
 p = self.r.pipeline()

 if not self.inblock:
 old_data = dict(self)

 if replace:
 p.delete(self.itemkey)

 elif remove_fields:
 p.hdel(self.itemkey, *remove_fields)

 self.store(add_data, self.itemkey, p)
 p.execute()

 if self.inblock:
 data = {k: old_data[k] for k in old_data
 if k not in remove_fields}
 data.update(add_data)

 self.invalidate(new_data=data)

 if self.collection is not None:
 self.collection.reindex(self.id, data, old_data)

 else:
 self.invalidate()

 def read(self):
 data = self.r.hgetall(self.itemkey)
 if self.include_id:
 data[b'id'] = self.id.encode("utf8")
 return {k.decode('utf8'):literal_eval(v.decode('utf8'))
 for k,v in data.items()}

 def delete(self):
 if self.collection is not None:
 self.collection.remove_from_index(self.id, self)
 self.collection.untrack_id(self.id)

 self.r.delete(self.itemkey)

 @staticmethod
 def store(data, key, client):
 data = {k: repr(v).encode('utf8')
 for k,v in data.items()}

 return client.hmset(key, data)

 @property
 def id(self):
 return self.itemkey.rpartition(":")[-1]

[docs]class RedisSet(MutableDataSet):
 """
 RedisSet(key=None, client=None, index_size=4)

 A RedisSet is an :class:`AbstractDataSet` that stores its items in
 a Redis database (using a Sorted Set to represent the collection,
 and a sorted set to represent items).

 :param key: The base key that should be used for the sorted set. If
 not given, one is deterministically generated based on the current
 resource.
 :param client: A :class:`redis.StrictRedis` instance that should be
 used to communicate with the redis server. If not given, a default
 instance is used.
 :param index_size: The number of bytes to use to index items in the
 set (per item).
 """

 def __init__(self, key=None, client=None, **args):
 if key is None:
 key = ctx.resource

 if isinstance(key, AbstractResource):
 key = "findig:resource:{}".format(key.name)

 self.colkey = key
 self.itemkey = self.colkey + ':item:{id}'
 self.indkey = self.colkey + ':index'
 self.incrkey = self.colkey + ':next-id'
 self.genid = args.pop(
 'generate_id',
 lambda d: self.r.incr(self.incrkey)
)
 self.indsize = args.pop('index_size', 4)
 self.filterby = args.pop('filterby', {})
 self.indexby = args.pop('candidate_keys', [('id',)])
 self.include_ids = args.pop('include_ids', True)
 self.r = redis.StrictRedis() if client is None else client

 def __repr__(self):
 if self.filterby:
 name = "filtered-redis-view"
 suffix = "|{}".format(
 ",".join("{}={!r}".format(k,v)
 for k,v in self.filterby.items())
)
 else:
 name = "redis-set"
 suffix = ""

 return "<{name}({key!r}){suffix}>".format(
 name=name, suffix=suffix, key=self.colkey
)

 def __iter__(self):
 """Query the set and iterate through the elements."""
 # If there is a filter, and it is completely encapsulated by
 # our index, we can use that to iter through the items

 tokens = self.__buildindextokens(self.filterby, raise_err=False)
 if tokens:
 # Pick an index to scan
 token = random.choice(tokens)
 id_blobs = self.r.zrangebylex(self.indkey, token.value, token.value)
 ids = [bs[self.indsize:] for bs in id_blobs]

 else:
 ids = self.r.zrange(self.colkey, 0, -1)

 for id in map(lambda bs: bs.decode('ascii'), ids):
 itemkey = self.itemkey.format(id=id)
 if self.filterby:
 # Check the items against the filter if it was
 # specified
 data = RedisObj(itemkey, self, self.include_ids)
 if FilteredDataSet.check_match(data, self.filterby):
 yield data
 else:
 yield RedisObj(itemkey, self, self.include_ids)

 def add(self, data):
 id = str(data['id'] if 'id' in data else self.genid(data))
 itemkey = self.itemkey.format(id=id)

 with self.group_redis_commands():
 tokens = self.add_to_index(id, data)
 self.track_id(id)
 RedisObj.store(data, itemkey, self.r)

 return tokens[0]

 def fetch_now(self, **spec):
 if list(spec) == ['id']:
 # Fetching by ID only; just lookup the item according to its
 # key
 itemkey = self.itemkey.format(id=spec['id'])
 if not self.r.exists(itemkey):
 raise LookupError("No matching item found.")
 else:
 return RedisObj(itemkey, self)

 else:
 return super(RedisSet, self).fetch_now(**spec)

 def track_id(self, id):
 self.r.zadd(self.colkey, time(), id)

 def untrack_id(self, id):
 self.r.zrem(self.colkey, id)

 def remove_from_index(self, id, data):
 tokens = self.__buildindextokens(data, id, False)
 for token in tokens:
 self.r.zrem(
 self.indkey,
 token.value + id.encode('ascii')
)

 def add_to_index(self, id, data):
 tokens = self.__buildindextokens(data, id)
 for token in tokens:
 self.r.zadd(
 self.indkey,
 0,
 token.value + id.encode('ascii')
)
 return tokens

 def reindex(self, id, data, old_data):
 with self.group_redis_commands():
 self.remove_from_index(id, data)
 self.add_to_index(id, data)

 def clear(self):
 # Remove all the child objects
 for_removal = list(self)

 with self.group_redis_commands():
 for obj in for_removal:
 obj.delete()

 self.r.delete(self.incrkey)

 # Delete all the redis structures
 # Technically this step shouldn't be necessary;
 # Redis should clean up the other data structures

 def filtered(self, **spec):
 filter = dict(self.filterby)
 filter.update(spec)
 args = {
 'key': self.colkey,
 'candidate_keys': self.indexby,
 'index_size': self.indsize,
 'filterby': filter,
 'client': self.r,
 }
 return RedisSet(**args)

 @contextmanager
 def group_redis_commands(self):
 client = self.r
 self.r = client.pipeline()

 yield

 self.r.execute()
 self.r = client

 def __buildindextokens(self, data, generated_id=None, raise_err=True):
 index = []

 for ind in self.indexby:
 mapping = {}
 for field in ind:
 if field in data:
 mapping[field] = data[field]
 elif field == 'id' and generated_id is not None: # special case
 mapping[field] = generated_id
 else:
 # Can't use this index
 break
 else:
 index.append(IndexToken(mapping, self.indsize))

 if not index:
 if raise_err:
 raise ValueError("Could not index this data. "
 "This may be due to insuffient index keys "
 "or incomplete data."
)
 else:
 return []
 else:
 return index

__all__ = ["RedisSet"]

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/tools/dataset.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.tools.dataset

from abc import ABCMeta, abstractmethod
from collections.abc import Callable, Iterable, Mapping, MutableMapping
from contextlib import contextmanager
from itertools import islice

from werkzeug.utils import cached_property

from findig.context import ctx
from findig.utils import extremum

[docs]class AbstractDataSet(Iterable, metaclass=ABCMeta):
 """
 An abstract data set is a representation of a collection of items.

 Concrete implementations must provide *at least* an implementation
 for ``__iter__``, which should return an iterator of
 :class:`AbstractRecord` instances.

 """

 def __str__(self):
 return "[{}]".format(
 ", ".join(str(item) for item in self)
)

[docs] def fetch(self, **search_spec):
 """
 Fetch an :class:`AbstractRecord` matching the search specification.

 If this is called outside a request, a lazy record is returned
 immediately (i.e., the backend isn't hit until the record is
 explicitly queried).
 """
 if hasattr(ctx, 'request') and ctx.request.method.lower() in ('get', 'head'):
 # We're inside a GET request, so we can immediately grab a
 # record and return it
 return self.fetch_now(**search_spec)

 else:
 # We're not inside a request; we don't wan't to hit the
 # database searching for the record unless the record is
 # explicitly accessed.
 cls = LazyMutableRecord \
 if isinstance(self, MutableDataSet) \
 else LazyRecord
 return cls(lambda: self.fetch_now(**search_spec))

[docs] def fetch_now(self, **search_spec):
 """
 Fetch an :class:`AbstractRecord` matching the search specification.

 Unlike :meth:`fetch`, this function will always hit the backend.
 """
 for record in self:
 if FilteredDataSet.check_match(record, search_spec):
 return record
 else:
 raise LookupError("No matching item found.")

[docs] def filtered(self, **search_spec):
 """
 Return a filtered view of this data set.

 Each keyword represents the name of a field that is checked, and
 the corresponding argument indicates what it is checked against. If
 the argument is :class:`~collections.abc.Callable`, then it should
 be a predicate that returns ``True`` if the field is valid (be aware
 that the predicate will passed be ``None`` if the field isn't
 present on the record), otherwise it is compared against the field
 for equality.
 """
 return FilteredDataSet(self, **search_spec)

[docs] def limit(self, count, offset=0):
 """
 Return a limited version of this data set.

 :param offset: The number of items to skip from the beginning
 :param count: The maximum number of items to return

 """
 return DataSetSlice(self, offset, offset+count)

[docs] def sorted(self, *sort_spec, descending=False):
 """
 Return a sorted view of this data set.

 The method takes a variable number of arguments that specify its
 sort specification.

 If a single, callable argument is provided, it is taken as a
 sort key for a record.

 Otherwise, the arguments are taken as field names to be sorted,
 in the same order given in the argument list. Records that omit
 one of these fields appear later in the sorted set than
 those that don't.

 """
 return OrderedDataSet(self, *sort_spec, descending=descending)

[docs]class MutableDataSet(AbstractDataSet, metaclass=ABCMeta):
 """
 An abstract data set that can add new child elements.
 """

 @abstractmethod
[docs] def add(self, data):
 """Add a new child item to the data set."""

[docs]class AbstractRecord(Mapping, metaclass=ABCMeta):
 """
 An representation of an item belonging to a collection.
 """
 def __iter__(self):
 yield from self.cached_data

 def __len__(self):
 return len(self.cached_data)

 def __getitem__(self, key):
 return self.cached_data[key]

 def __str__(self):
 return "{{{}}}".format(
 ", ".join("{!r} : {}".format(k, v)
 for k,v in self.items())
)

 @cached_property
 def cached_data(self):
 return self.read()

 @abstractmethod
[docs] def read(self):
 """
 Read the record's data and return a mapping of fields to
 values.
 """

[docs]class MutableRecord(MutableMapping, AbstractRecord, metaclass=ABCMeta):
 """
 An abstract record that can update or delete itself.
 """
 def __setitem__(self, field, val):
 self.patch({field: val})

 def __delitem__(self, field):
 self.patch({}, (field,))

 def invalidate(self, new_data=None):
 if new_data is None:
 self.__dict__.pop('cached_data', None)
 else:
 self.__dict__['cached_data'] = new_data

[docs] def start_edit_block(self):
 """
 Start a transaction to the backend.

 Backend edits made through this object should be grouped together
 until :meth:`close_edit_block` is called.

 :return: A token that is passed into :meth:`close_edit_block`.

 """
 raise NotImplementedError

[docs] def close_edit_block(self, token):
 """
 End a transaction started by :meth:`start_edit_block`.
 """
 raise NotImplementedError

 def update(self, E=None, **add_data):
 add_data.update({} if E is None else E)
 self.patch(add_data, ())

 @contextmanager
[docs] def edit_block(self):
 """
 A context manager for grouping a chain of edits together.
 Some subclasses may not support performing reads inside an
 edit block.
 """
 token = self.start_edit_block()
 yield token
 self.close_edit_block(token)

 @abstractmethod
[docs] def delete(self):
 """
 Delete the record's data.
 """

 @abstractmethod
[docs] def patch(self, add_data, remove_fields):
 """
 Update the record's data with the new data.
 """

class LazyRecord(AbstractRecord):
 def __init__(self, func):
 self.func = func

 def read(self):
 return self.record

 @cached_property
 def record(self):
 return self.func()

class LazyMutableRecord(MutableRecord, LazyRecord):
 def __init__(self, func):
 self.func = func

 def patch(self, *args, **kwargs):
 self.record.patch(*args, **kwargs)

 def start_edit_block(self):
 return self.record.start_edit_block()

 def close_edit_block(self, token):
 self.record.close_edit_block(token)

 def delete(self):
 self.record.delete()

class FilteredDataSet(AbstractDataSet):
 """
 A concrete implementation of a data set that wraps another data
 to only expose items that pass a through a filter.

 :param dataset: A dataset that is filtered
 :type dataset: :class:AbstractDataSet

 The filter is specified through keyword arguments to the instance.
 Each keyword represents the name of a field that is checked, and
 the corresponding argument indicates what it is checked against. If
 the argument is :class:`~collections.abc.Callable`, then it should
 be a predicate that returns ``True`` if the field is valid (be aware
 that the predicate will passed be ``None`` if the field isn't
 present on the record), otherwise it is compared against the field
 for equality. The function :meth:FilteredDataSet.check_match
 implements this checking procedure.
 """

 def __init__(self, dataset, **filter_spec):
 self.ds = dataset
 self.fs = filter_spec

 def __iter__(self):
 for record in self.ds:
 if self.check_match(record, self.fs):
 yield record

 def __repr__(self):
 return "<filtered-view({!r})|{}".format(
 self.ds,
 ",".join("{}={!r}".format(k,v) for k,v in self.fs.items())
)

 @staticmethod
 def check_match(record, spec):
 """
 Check that a record matches the search specification.

 :param record: A record against which the specification is checked.
 :type record: :class:collections.abc.Mapping
 :param spec: A dictionary of field names and their expected values.
 If an "expected value" is callable, it is treated as
 a predicate that returns ``True`` if the field's
 value is considered a match.
 """

 for field, expected in spec.items():
 val = record.get(field)
 if isinstance(expected, Callable):
 if not expected(val):
 return False
 elif not val == expected:
 return False
 else:
 return True

class DataSetSlice(AbstractDataSet):
 """
 A concrete implementation of a data set that wraps another data set
 to expose only a slice of the original set.

 :param start: Items before this zero based, index are skipped.
 :type start: positive integer
 :param stop: If given, this is the first item to be skipped after
 the slice.
 :type stop: positive integer
 :param step: If given, step - 1 items are skipped between every
 item in the slice.
 """
 def __init__(self, dataset, start, stop=None, step=None):
 self.ds = dataset
 self.start = start
 self.stop = stop
 self.step = step

 def __iter__(self):
 yield from islice(self.ds, self.start, self.stop, self.step)

 def __repr__(self):
 return "{!r}[{}:{}]".format(
 self.ds,
 self.start,
 "" if self.stop is None else self.stop
)

class OrderedDataSet(AbstractDataSet):
 """
 A concrete implementation of a data set that wraps another data set
 and returns its items in order.
 """
 def __init__(self, dataset, *sort_spec, descending=False):
 self.ds = dataset
 self.ss = sort_spec
 self.rv = descending

 def __iter__(self):
 yield from sorted(self.ds, key=self.make_key(*self.ss), reverse=self.rv)

 def __repr__(self):
 return "<sorted-view[{}] of {!r}>".format(
 ", ".join(self.ss),
 self.ds
)

 @staticmethod
 def make_key(*sort_spec):
 if len(sort_spec) == 1 and isinstance(sort_spec[0], Callable):
 return sort_spec[0]
 elif any(isinstance(si, Callable) for si in sort_spec):
 raise ValueError("If a key function is used, it must be the "
 "only argument.")
 else:
 def keyfunc(record):
 return tuple(record.get(k, extremum()) for k in sort_spec)
 return keyfunc

__all__ = ['AbstractDataSet', 'AbstractRecord', 'MutableDataSet',
 'MutableRecord', 'FilteredDataSet', 'DataSetSlice',
 'OrderedDataSet']

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/wrappers.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.wrappers

from werkzeug.utils import cached_property
from werkzeug.wrappers import Request as Request_

from findig.content import Parser
from findig.context import ctx
from findig.utils import DataPipe, tryeach

[docs]class Request(Request_):
 """A default request class for wrapping WSGI environs."""

 #: The maximum allowed content-length for the requests is set to
 #: 10MB by default.
 max_content_length = 1024 * 1024 * 10

 @cached_property
[docs] def input(self):
 """
 Request content that has been parsed into a python object.
 This is a read-only property.
 """
 parsed = tryeach(
 [
 getattr(ctx.resource, 'parser', Parser()),
 ctx.dispatcher.parser
],
 self.data
)[1]

 process = DataPipe(
 getattr(ctx.resource, 'pre_processor', None),
 ctx.dispatcher.pre_processor
)

 return process(parsed)

__all__ = ['Request']

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/resource.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.resource

import abc
import collections
import functools
import inspect
import itertools
import uuid
from collections.abc import Mapping
from functools import partial

from werkzeug.exceptions import MethodNotAllowed, NotFound
from werkzeug.routing import BuildError as URLBuildError
from werkzeug.utils import cached_property, validate_arguments

from findig.content import ErrorHandler, Formatter, Parser
from findig.context import url_adapter, request, ctx
from findig.data_model import DataModel, DataSetDataModel, DictDataModel

[docs]class AbstractResource(metaclass=abc.ABCMeta):
 """
 Represents a very low-level web resource to be handled by Findig.

 Findigs apps are essentially a collection of routed resources. Each
 resource is expected to be responsible for handling some requests to
 a set of one or more URLs. When requests to such a URL is received,
 Findig looks-up what resource is responsible, and hands the request
 object over to the resource for processing.

 Custom implementations of the abstract class are possible. However,
 this class operates at a very low level in the Findig stack, so it is
 recommended that they are only used for extreme cases where those
 low-level operations are needed.

 In addition to the methods defined here, resources should have a
 name attribute, which is a string that uniquely identifies it within
 the app. Optional *parser* and *formatter* attributes corresponding to
 :class:`findig.content.AbstractParser` and
 :class:`finding.content.AbstractFormatter` instances respectively,
 will also be used if added.
 """

 @abc.abstractmethod
[docs] def get_supported_methods(self):
 """
 Return a Python set of HTTP methods to be supported by the resource.
 """

 @abc.abstractmethod
[docs] def handle_request(self, request, url_values):
 """
 Handle a request to one of the resource URLs.

 :param request: An object encapsulating information about the
 request. It is the same as
 :py:data:`findig.context.request`.
 :type request: :class:`~findig.wrappers.Request`, which
 in turn is a subclass of
 :py:class:`werkzeug.wrappers.Request`
 :param url_values: A dictionary of arguments that have been parsed
 from the URL routes, which may help to better
 identify the request. For example, if a resource
 is set up to handle URLs matching the rule
 ``/items/<int:id>`` and a request is sent to
 ``/items/43``, then *url_values* will be
 ``{'id': 43}``.
 :return: This function should return data that will be transformed
 into an HTTP response. This is usually a dictionary, but
 depending on how formatting is configured, it may be
 any object the output formatter configured for the
 resource will accept.
 """

[docs] def build_url(self, values, **args):
 """
 build_url(values)

 Build a URL for this resource.

 The URL is built using the current WSGI environ, so this function
 must be called from inside a request context. Furthermore, the
 resource must have already been routed to in the current app
 (see: :meth:`findig.dispatcher.Dispatcher.route`), and this method
 must be passed values for any variables in the URL rule used to
 route to the resource.

 :param values: Values for the variables in a URL rule used to
 route to the resource.
 :type values: :class:`dict`

 Example::

 >>> from findig import App
 >>> app = App()
 >>> @app.route("/index/<int:num>")
 ... @app.resource
 ... def item(num):
 ... return {}
 ...
 >>> with app.test_context(path="/index/1"):
 ... item.build_url(dict(num=4))
 ...
 '/index/4'

 This method is *not* abstract.

 """
 return url_adapter.build(self.name, values, **args)

 def __getattr__(self, name):
 if getattr(ctx, 'resource', None) is not None:
 if ctx.resource is self:
 if name in ctx.url_values:
 return ctx.url_values[name]

 raise AttributeError(name)

[docs]class Resource(AbstractResource):
 """
 Resource(wrapped=None, lazy=None, name=None, model=None, formatter=None, parser=None, error_handler=None)

 A concrete implementation of :class:`AbstractResource`.

 This accepts keyword arguments only.

 :keyword wrapped: A function which the resource wraps; it
 typically returns the data for that particular
 resource.
 :keyword lazy: Indicates whether the wrapped resource function
 returns lazy resource data; i.e. data is not
 retrieved when the function is called, but at some
 later point when the data is accessed. Setting this
 allows Findig to evaluate the function's return
 value after all resources have been declared to
 determine if it returns anything useful (for
 example, a :class:DataRecord which can be used as
 a model).
 :keyword name: A name that uniquely identifies the resource.
 If not given, it will be randomly generated.
 :keyword model: A data-model that describes how to read and write
 the resource's data. By default, a generic
 :class:`findig.data_model.DataModel` is attached.
 :keyword formatter: A function that should be used to format the
 resource's data. By default, a generic
 :class:`findig.content.Formatter` is attached.
 :keyword parser: A function
 that should be used to parse request content
 for the resource. By default, a generic
 :class:`findig.content.Parser` is attached.
 :keyword error_handler: A function that should be used to convert
 exception into :class:`Responses <werkzeug.wrappers.BaseResponse>`.
 By default, a :class:`findig.content.ErrorHandler` is used.

 """
 def __init__(self, **args):
 self.name = args.get('name', str(uuid.uuid4()))
 self.model = args.get('model', DataModel())
 self.lazy = args.get('lazy', False)
 self.parser = args.get('parser', Parser())
 self.formatter = args.get('formatter', Formatter())

 if 'error_handler' not in args:
 args['error_handler'] = eh = ErrorHandler()
 args['error_handler'].register(LookupError, self._on_lookup_err)

 self.error_handler = args.get('error_handler')

 wrapped = args.get('wrapped', lambda **_: {})
 functools.update_wrapper(self, wrapped)

 def _on_lookup_err(self, err):
 raise NotFound

 def __call__(self, **kwargs):
 return self.__wrapped__(**kwargs)

[docs] def compose_model(self, wrapper_args=None):
 """
 :noindex:

 Make a composite model for the resource by combining a
 lazy data handler (if present) and the model specified on
 the resource.

 :param wrapper_args: A set of arguments to call the wrapped
 function with, so that a lazy data handler
 can be retrieved. If none is given, then
 fake data values are passed to the wrapped
 function. In this case, the data-model
 returned *must not* be used.
 :returns: A data-model for the resource

 This is an internal method.
 """
 if self.lazy:
 if wrapper_args is None:
 # Pass in some fake ass argument values to the wrapper
 # so we can get a pretend data-set for inspection.
 argspec = inspect.getfullargspec(self.__wrapped__)
 wrapper_args = {
 name : None for name in
 itertools.chain(argspec.args, argspec.kwonlyargs)
 }

 dataset = self.__wrapped__(**wrapper_args)
 dsdm = DataSetDataModel(dataset)
 return self.model.compose(dsdm)
 elif wrapper_args is not None and 'read' not in self.model:
 # Add a 'read' method to the model that just calls this
 # model.
 new_model = DictDataModel({
 'read': lambda: self.__wrapped__(**wrapper_args)
 })
 return self.model.compose(new_model)
 else:
 return self.model

[docs] def get_supported_methods(self, model=None):
 """
 Return a set of HTTP methods supported by the resource.

 :param model: The data-model to use to determine what methods
 supported. If none is given, a composite data model
 is built from ``self.model`` and any data source
 returned by the resource's wrapped function.
 """
 model = self.compose_model() if model is None else model
 supported_methods = {'GET'}

 if 'delete' in model:
 supported_methods.add('DELETE')

 if 'write' in model:
 supported_methods.add('PUT')

 return supported_methods

[docs] def handle_request(self, request, wrapper_args):
 """
 Dispatch a request to a resource.

 See :py:meth:`AbstractResource.handle_request` for accepted
 parameters.

 """
 method = request.method.upper()
 try:
 model = self.compose_model(wrapper_args)
 handler = self._extract_handler(request, method, model)

 args, kwargs = validate_arguments(handler.func, handler.args, wrapper_args)
 return handler.func(*args, **kwargs)

 except BaseException as err:
 return self.error_handler(err)

 def _extract_handler(self, request, method, model):
 supported_methods = self.get_supported_methods(model)

 if method not in supported_methods and method != 'HEAD':
 raise MethodNotAllowed(list(supported_methods))

 elif method == 'GET' or method == 'HEAD':
 return partial(model['read'])

 elif method == 'DELETE':
 return partial(model['delete'])

 elif method == 'PUT':
 return partial(model['write'], request.input)

 else:
 raise ValueError

[docs] def collection(self, wrapped=None, **args):
 """
 Create a :class:`Collection` instance

 :param wrapped: A wrapped function for the collection. In most
 cases, this should be a function that returns an iterable of
 resource data.

 The keyword arguments are passed on to the constructor for
 :class:Collection, except that if no *name* is given, it defaults
 to {module}.{name} of the wrapped function.

 This function may also be used as a decorator factory::

 @resource.collection(include_urls=True)
 def mycollection(self):
 pass

 The decorated function will be replaced in its namespace by a
 :class:`Collection` that wraps it. Any keyword arguments
 passed to the decorator factory will be handed over to the
 :class:`Collection` constructor. If no keyword arguments
 are required, then ``@collection`` may be used instead of
 ``@collection()``.

 """
 def decorator(wrapped):
 args['wrapped'] = wrapped
 args.setdefault(
 'name', "{0.__module__}.{0.__qualname__}".format(wrapped))
 return Collection(self, **args)

 if wrapped is not None:
 return decorator(wrapped)

 else:
 return decorator

[docs]class Collection(Resource):
 """
 Collection(of, include_urls=False, bindargs=None, **keywords)

 A :class:`Resource` that acts as a collection of other resources.

 :param of: The type of resource to be collected.
 :type of: :class:`Resource`
 :param include_urls: If ``True``, the collection will attempt to
 insert a ``url`` field on each of the child items that it returns.
 Note that this only works if the child already has enough information
 in its fields to build a url (i.e., if the URL for the child
 contains an ``:id`` fragment, then the child must have an id
 field, which is then used to build its URL.
 :param bindargs: A dictionary mapping field names to URL variables.
 For example: a child resource may have the URL variable ``:id``,
 but have a corresponding field named ``user_id``; the appropriate
 value for *bindargs* in this case would be ``{'user_id': 'id'}``.

 """
 def __init__(self, of, **args):
 super(Collection, self).__init__(**args)
 self.include_urls = args.pop('include_urls', False)
 bindargs = args.pop('bindargs', {})
 self.collects = collections.namedtuple(
 "collected_resource", "resource binding")(of, bindargs)

 def get_supported_methods(self, model=None):
 model = self.compose_model() if model is None else model
 supported = super().get_supported_methods(model)

 if 'make' in model:
 supported.add('POST')

 return supported

 def _extract_handler(self, request, method, model):
 if method == 'POST':
 return partial(model['make'], request.input)
 else:
 return super()._extract_handler(request, method, model)

 def handle_request(self, request, wrapper_args):
 ret = super().handle_request(request, wrapper_args)

 method = request.method.upper()

 # After the request has been handled, these branches may modify
 # the output
 if method == 'POST':
 ctx.response.setdefault('status', 201)

 url = self._try_build_item_url(ret)
 if url is not None:
 ctx.response['headers'].setdefault('Location', url)

 elif method == 'GET' and self.include_urls:
 ret = map(self._include_url_in_item, ret)

 return ret

 def _include_url_in_item(self, item):
 url = self._try_build_item_url(item)
 if url is not None:
 if isinstance(item, Mapping):
 item = dict(item)
 item.setdefault('url', url)
 else:
 try:
 item.url = url
 except:
 pass

 return item

 def _try_build_item_url(self, data):
 child, bind_args = self.collects
 if not isinstance(data, Mapping):
 data = data.__dict__
 args = {(bind_args[k] if k in bind_args else k):data[k]
 for k in data}
 try:
 url = url_adapter.build(child.name, args, append_unknown=False)
 except URLBuildError:
 pass
 else:
 return url

__all__ = ['AbstractResource', 'Resource', 'Collection']

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/tools/validator.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.tools.validator

"""
The :mod:`findig.tools.validator` module exposes the :class:`Validator`
which can be used to validate an application or request's input data.

Validators work by specifying a converter for each field in the
input data to be validated::

 validator = Validator(app)

 @validator.enforce(id=int)
 @app.route("/test")
 def resource():
 pass

 @resource.model("write")
 def write_resource(data):
 assert isinstance(data['id'], int)

If the converter fails to convert the field's value, then a
``400 BAD REQUEST`` error is sent back.

Converters don't have to be functions; they can be a singleton list
containing another converter, indicating that the field is expected to
be a list of items for which that converter works::

 @validator.enforce(ids=[int])
 @app.route("/test2")
 def resource2():
 pass

 @resource2.model("write")
 def write_resource(data):
 for id in data['ids']:
 assert isinstance(id, int)

Converters can also be string specifications corresponding to a
pre-registered converter and its arguments. All of
werkzeug's
`builtin converters and their arguments`__
and their arguments are pre-registered and thus usable::

 @validator.enforce(foo='any(bar,baz)', cid='string(length=3)')
 @app.route("/test3")
 def resource3():
 pass

 @resource3.model("write")
 def write_resource(data):
 assert data['foo'] in ('bar', 'baz')
 assert len(data['cid']) == 3

__ http://werkzeug.pocoo.org/docs/routing/#builtin-converters

"""

from collections import namedtuple
from collections.abc import Callable, Mapping, Sequence
from datetime import datetime
from functools import partial
from inspect import getmembers
import re

from werkzeug.datastructures import MultiDict
from werkzeug.exceptions import BadRequest
from werkzeug.routing import parse_converter_args, BaseConverter

from findig.context import ctx
from findig.resource import AbstractResource, Collection
from findig.utils import DataPipe, tryeach

_converter_re = re.compile(r'''
 (?P<name>[a-zA-Z_][a-zA-Z0-9_]*) # converter name
 (?:\((?P<args>.*?)\))? # converter args
''', re.VERBOSE | re.UNICODE)

class converter_spec(namedtuple('converter_spec', 'name args')):
 def __repr__(self):
 if self.args is None:
 return repr(self.name)
 else:
 return repr("{}({})".format(self.name, self.args))

[docs]class Validator:
 """
 A higher-level tool to be used to validate request input data.

 :param app: The Findig application that the validator is attached to.
 :type app: :class:`findig.App`
 :param include_collections: If ``True``, any validation rules set on any
 resource will also be used for any :class:`~findig.resource.Collection`
 that collects it. Even when this argument is set, inherited rules can still
 be overridden by declaring rules specifically for the collection.

 Validators are only capable of validating request input data (i.e.,
 data received as part of the request body). To validate URL fragments,
 consider using *converters* in your URL rules. See
 `werkzeug's routing reference <http://werkzeug.pocoo.org/docs/0.10/routing/#rule-format>`_.

 Validators work by specifying converters for request input fields.
 If a converter is specified, the validator will use it to convert the
 field and replace it with the converted value. See :meth:`enforce` for
 more about converters.

 """
 def __init__(self, app=None, include_collections=True):
 self.include_collections = include_collections
 self.validation_specs = {}
 self.restriction_specs = {}
 self.strip_extras = {}

 if app is not None:
 self.attach_to(app)

[docs] def attach_to(self, app):
 """
 Hook the validator into a Findig application.

 Doing so allows the validator to inspect and replace incoming
 input data. This is called automatically for an app passed to the
 validator's constructor, but can be called for additional app
 instances. This function should only be called once per application.

 :param app: The Findig application that the validator is attached to.
 :type app: :class:`findig.App`
 """
 # Hook the validator into the dispatcher's data pre processor
 # so that we can look at incoming request data and complain
 # if the request data doesn't match what we're looking for
 app.pre_processor = DataPipe(app.pre_processor, self.validate)
 app.startup_hook(partial(self.__prepare_converters, app))

 @staticmethod
[docs] def regex(pattern, flags=0, template=None):
 r"""
 Create a function that validates strings against a regular expression.

 ::

 >>> func = Validator.regex("boy")
 >>> func("boy")
 'boy'
 >>> func("That boy")
 Traceback (most recent call last):
 ...
 ValueError: That boy
 >>> func("boy, that's handy.")
 Traceback (most recent call last):
 ...
 ValueError: boy, that's handy.

 If you supply a template, it is used to construct a return
 value by doing backslash substitution::

 >>> func = Validator.regex("(male|female)", template=r"Gender: \1")
 >>> func("male")
 'Gender: male'
 >>> func("alien")
 Traceback (most recent call last):
 ...
 ValueError: alien

 """

 regexp = re.compile(pattern, flags)
 def match_string(s):
 m = regexp.fullmatch(s)
 if m is None:
 raise ValueError(s)
 elif template is not None:
 return m.expand(template)
 else:
 return m.string
 return match_string

 @staticmethod
[docs] def date(format, *alternatives):
 """
 date(format[, format[, ...]])

 Create a function that validates a date field.

 :param format: A date/time format according to
 :meth:`datetime.datetime.strptime`. If more than one formats are
 passed in, the generated function will try each format in order
 until one of them works on the field (or until there are no formats
 left to try).

 Example::

 >>> func = Validator.date("%Y-%m-%d %H:%M:%S%z")
 >>> func("2015-07-17 09:00:00+0400")
 datetime.datetime(2015, 7, 17, 9, 0, tzinfo=datetime.timezone(datetime.timedelta(0, 14400)))
 >>> func("not-a-date")
 Traceback (most recent call last):
 ...
 ValueError: time data 'not-a-date' does not match format '%Y-%m-%d %H:%M:%S%z'

 >>> func = Validator.date("%Y-%m-%d %H:%M:%S%z", "%Y-%m-%d")
 >>> func("2015-07-17")
 datetime.datetime(2015, 7, 17, 0, 0)

 """
 formats = [format]; formats.extend(alternatives)
 funcs = [lambda s: datetime.strptime(s, fmt) for fmt in formats]
 return partial(tryeach, funcs)

[docs] def restrict(self, *args, strip_extra=False):
 """
 restrict([field[, field[, ...]],] strip_extra=True)
 Restrict the input data to the given fields

 :param field: A field name that should be allowed. An asterisk at the
 start of the field name indicates a required field (asterisks at
 the start of field names can be escaped with another asterisk
 character). This parameter can be used multiple times to indicate
 different fields.

 :param strip_extra: Controls the behavior upon encountering a field
 not contained in the list, during validation. If ``True``, the
 field will be removed. Otherwise, a :class:`UnexpectedFields` is
 raised.

 Once this method is called, any field names that do not appear in the
 list are disallowed.

 """
 FIELD_REGEX = re.compile(r"^(**)\1(*?)")
 def conv_field(field_name):
 """conv_field("*field") -> ("field", FIELD-IS-REQUIRED)"""
 m = FIELD_REGEX.match(field_name)
 if m:
 return (FIELD_REGEX.sub(r"\1", field_name), m.group(2) == "*")
 else:
 return field_name, False

 def restrict_to(resource, fields=None):
 fields = list(map(conv_field, [] if fields is None else fields))
 self.restriction_specs.setdefault(resource.name, {}).update(fields)
 self.strip_extras[resource.name] = strip_extra
 return resource

 if len(args) == 0:
 return restrict_to

 elif isinstance(args[0], AbstractResource):
 return restrict_to(args[0], args[1:])

 else:
 return partial(restrict_to, fields=args)

[docs] def enforce(self, *args, **validator_spec):
 """
 enforce(resource, **validation_spec)

 Register a validation specification for a resource.

 The validation specification is a set of ``field=converter``
 arguments linking an input field name to a converter that should
 be used to validate the field. A converter can be any of the following:

 * :class:`collections.abc.Callable` (including functions) -- This can
 be a simple type such as :class:`int` or :class:`uuid.UUID`, but
 any function or callable can work. It should take a field value and
 convert it to a value of the desired type. If it throws an error,
 then findig will raise a :class:`~werkzeug.exceptions.BadRequest`
 exception.

 Example::

 # Converts an int from a valid string base 10 representation:
 validator.enforce(resource, game_id=int)

 # Converts to a float from a valid string
 validator.enforce(resource, duration=float)

 * :class:`str` -- If a string is given, then it is interpreted as a
 converter specification. A converter specification includes the
 converter name and optionally arguments for pre-registered
 converters. The following converters are pre-registered by
 default (you may notice that they correspond to the URL rule
 converters available for werkzeug):

 .. function:: string(minlength=1, length=None, maxlength=None)
 :noindex:

 This converter will accept a string.

 :param length: If given, it will indicate a fixed length field.
 :param minlength: The minimum allowed length for the field.
 :param maxlength: The maximum allowed length for the field.

 .. function:: any(*items)
 :noindex:

 This converter will accept only values from the variable
 list of options passed as the converter arguments. It's
 useful for limiting a field's value to a small set of possible
 options.

 .. function:: int(fixed_digits=0, min=None, max=None)
 :noindex:

 This converter will accept a string representation of a
 non-negative integer.

 :param fixed_digits: The number of fixed digits in the field.
 For example, set this to **3** to convert ``'001'`` but not
 ``'1'``. The default is a variable number of digits.
 :param min: The minimum allowed value for the field.
 :param max: The maximum allowed value for the field.

 .. function:: float(min=None, max=None)
 :noindex:

 This converter will accept a string representation of a
 non-negative floating point number.

 :param min: The minimum allowed value for the field.
 :param max: The maximum allowed value for the field.

 .. function:: uuid()
 :noindex:

 This converter will accept a string representation of a
 uuid and convert it to a :class:`uuid.UUID`.

 Converters that do not need arguments can omit the parentheses
 in the converter specification.

 Examples::

 # Converts a 4 character string
 validator.enforce(resource, student_id='string(length=10)')

 # Converts any of these string values: 'foo', 1000, True
 validator.enforce(resource, field='any(foo, 1000, True)')

 # Converts any non-negative integer
 validator.enforce(resource, game_id='int')

 # and any float <1000
 validator.enforce(resource, duration='float(max=1000)')

 .. important:: Converter specifications in this form **cannot**
 match strings that contain forward slashes. For example,
 'string(length=2)' will fail to match *'/e'* and
 'any(application/json,html)' will fail to
 match *'application/json'*.

 * or, :class:`list` -- This must be a singleton list containing a
 converter. When this is given, the validator will treat the field
 like a list and use the converter to convert each item.

 Example::

 # Converts a list of integers
 validator.enforce(resource, games=[int])

 # Converts a list of uuids
 validator.enforce(resource, components=['uuid'])

 # Converts a list of fixed length strings
 validator.enforce(resource, students=['string(length=10)'])

 This method can be used as a decorator factory for resources::

 @validator.enforce(uid=int, friends=[int])
 @app.route("/")
 def res():
 return {}

 Converter specifications given here are only checked when a field is
 present; see :meth:`restrict` for specifying required fields.

 .. warning:: Because of the way validators are hooked up, registering
 new specifications after the first request has run might cause
 unexpected behavior (and even internal server errors).

 """
 def decorator(resource):
 self.__register_spec(resource.name, validator_spec)
 return resource

 if len(args) == 0:
 return decorator
 elif len(args) == 1:
 return decorator(args[0])
 else:
 raise TypeError

[docs] def enforce_all(self, **validator_spec):
 """
 enforce_all(**validation_spec)

 Register a global validation specification.

 This function works like :meth:`enforce`, except that the
 validation specification is registered for all resources instead
 of a single one.

 Global validation specifications have lower precedence than
 resource specific ones.

 """

 self.__register_spec(None, validator_spec)

 def __register_spec(self, key, spec):
 def validate_item_spec(item_spec):
 if isinstance(item_spec, str):
 m = _converter_re.fullmatch(item_spec)
 if m is not None:
 return converter_spec(m.group('name'), m.group('args'))
 else:
 return False

 elif isinstance(item_spec, list):
 if len(item_spec) != 1:
 return False
 else:
 return [validate_item_spec(item_spec[0])]

 elif not isinstance(item_spec, Callable):
 return False

 else:
 return item_spec

 for field, item_spec in spec.items():
 new_item_spec = validate_item_spec(item_spec)
 if item_spec is False:
 raise InvalidSpecificationError(item_spec)
 else:
 spec[field] = new_item_spec

 else:
 self.validation_specs.setdefault(key, {})
 self.validation_specs[key].update(spec)

 def __prepare_converters(self, app):
 def fix_spec(item_spec):
 if isinstance(item_spec, converter_spec):
 cname, args = item_spec
 args, kwargs = ((), {}) if args is None \
 else parse_converter_args(args)
 if cname not in app.url_map.converters:
 return None

 ccls = app.url_map.converters[cname]
 converter = ccls(app.url_map, *args, **kwargs)

 compiled_re = re.compile(converter.regex)
 return compiled_re, converter
 elif isinstance(item_spec, list):
 return [fix_spec(item_spec[0])]
 else:
 return item_spec

 for resource in self.validation_specs:
 for field, spec in self.validation_specs[resource].items():
 new_spec = fix_spec(spec)
 if new_spec is not None:
 self.validation_specs[resource][field] = new_spec
 else:
 raise InvalidSpecificationError(
 "\"{}={!r}\"".format(field, spec)
)

 def __check_item(self, data, key, item_spec):
 # '89', int -> pass
 # ['58', '84', '58'], [int] -> pass
 # ['89', 'foo', '59'], [int] -> fail
 # ['89', 'foo', '59'], [str] -> pass
 if isinstance(item_spec, Callable):
 # Easiest case: call the callable on the item data
 # to get the converted answer:
 return item_spec(data[key])

 elif isinstance(item_spec, list):
 unconverted_items = _ContainerWrapper(data.getlist(key))
 converted_items = []
 child_spec = item_spec[0]
 for i, _ in enumerate(unconverted_items):
 converted_items.append(
 self.__check_item(unconverted_items, i, child_spec)
)
 return converted_items
 elif isinstance(item_spec, tuple):
 regexp, converter = item_spec
 val = data[key]
 if not regexp.fullmatch(val):
 raise ValueError(val)
 else:
 return converter.to_python(val)

 else:
 raise InvalidSpecificationError(item_spec)

 def __handle_restrictions(self, data):
 strip_extras = self.strip_extras.get(ctx.resource.name, False)
 restrictions = self.restriction_specs.get(ctx.resource.name, None)
 if restrictions is None \
 and self.include_collections \
 and isinstance(ctx.resource, Collection):
 restrictions = self.restriction_specs.get(
 ctx.resource.collects.resource.name,
 {}
)
 strip_extras = self.strip_extras.get(
 ctx.resource.collects.resource.name,
 False
)
 if restrictions is not None:
 # Handle extra fields
 extras = [field for field in data if field not in restrictions]
 if extras and strip_extras:
 for field in extras:
 del data[field]
 elif extras:
 raise UnexpectedFields(extras, self)

 # Check for required fields
 missing = [field for field,required in restrictions.items()
 if required and field not in data]
 if missing:
 raise MissingFields(missing, self)

 return data

[docs] def validate(self, data):
 """
 Validate the data with the validation specifications that have
 been collected.

 This function must be called within an active request context in
 order to work.

 :param data: Input data
 :type data: mapping, or object with gettable/settable fields
 :raises: :class:`ValidationFailed` if one or more fields could not be
 validated.

 This is an internal method.

 """
 spec = {}
 spec.update(self.validation_specs.get(None, {}))
 if self.include_collections and isinstance(ctx.resource, Collection):
 spec.update(
 self.validation_specs.get(
 ctx.resource.collects.resource.name,
 {}
)
)
 spec.update(self.validation_specs.get(ctx.resource.name, {}))

 wrapped = self.__handle_restrictions(_ContainerWrapper(data))

 conversion_errs = []

 # Transform the data according to the conversion spec
 for field, field_spec in spec.items():
 # Ignore the field if it isn't in the specification
 if field not in wrapped:
 continue

 try:
 converted = self.__check_item(wrapped, field, field_spec)
 except InvalidSpecificationError:
 raise
 except:
 import traceback
 traceback.print_exc()
 conversion_errs.append(field)
 else:
 wrapped[field] = converted

 if conversion_errs:
 raise InvalidFields(conversion_errs, self)
 else:
 return wrapped.unwrap()

class _ContainerWrapper:
 def __init__(self, container):
 self._direct = False
 self._orig = container
 self._is_multidict = False

 if isinstance(container, Sequence):
 self._c = list(container)

 elif isinstance(container, MultiDict):
 self._is_multidict = True
 self._list_fields = set()
 self._c = container.copy()

 elif isinstance(container, Mapping):
 self._c = dict(container)

 else:
 self._c = container
 self._direct = True

 def __getitem__(self, key):
 if self._direct:
 return getattr(self._c, key)
 else:
 return self._c[key]

 def getlist(self, key):
 if self._is_multidict:
 l = self._c.getlist(key)
 self._list_fields.add(key)
 return l
 else:
 l = self[key]
 if not isinstance(l, Sequence):
 raise ValueError(l)
 else:
 return l

 def __setitem__(self, key, value):
 if self._direct:
 setattr(self._c, key, value)
 else:
 self._c[key] = value

 def __delitem__(self, key):
 if self._direct:
 delattr(self._c, key)
 else:
 del self._c[key]

 def __contains__(self, key):
 if self._direct:
 return hasattr(self._c, key)
 else:
 return key in self._c

 def unwrap(self):
 if isinstance(self._c, MultiDict):
 for field in self._list_fields:
 items = self._c.get(field, [])
 self._c.setlist(field, items)

 return self._c

 def __iter__(self):
 if self._direct:
 yield from getmembers(self._c)
 else:
 yield from self._c

class InvalidSpecificationError(ValueError):
 """Raised when an invalid specification is used."""

[docs]class ValidationFailed(BadRequest):
 """
 Raised whenever a :class:`Validator` fails to validate one or more
 fields.

 This exception is a subclass of :class:`werkzeug.exceptions.BadRequest`, so if allowed
 to bubble up, findig will send a ``400 BAD REQUEST``
 response automatically.

 Applications can, however, customize the way this exception is
 handled::

 from werkzeug.wrappers import Response

 # This assumes that the app was not supplied a custom error_handler
 # function as an argument.
 # If a custom error_handler function is being used, then
 # do a test for this exception type inside the function body
 # and replicate the logic
 @app.error_handler.register(ValidationFailed)
 def on_validation_failed(e):
 # Construct a response based on the error received
 msg = "Failed to convert input data for the following fields: "
 msg += str(e.fields)
 return Response(msg, status=e.status)

 """
 def __init__(self, fields, validator):
 super().__init__()

 #: A list of field names for which validation has failed. This will
 #: always be a complete list of failed fields.
 self.fields = fields

 #: The :class:`Validator` instance that raised the exception.
 self.validator = validator

[docs]class UnexpectedFields(ValidationFailed):
 """
 Raised whenever a resource receives an unexpected input field.
 """

[docs]class MissingFields(ValidationFailed):
 """
 Raised when a resource does not receive a required field in its input.
 """

[docs]class InvalidFields(ValidationFailed):
 """
 Raised when a resource receives a field that the validator can't convert.
 """

__all__ = ['Validator', 'InvalidSpecificationError', 'ValidationFailed',
 'UnexpectedFields', 'MissingFields', 'InvalidFields']

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/tools/protector/scopeutil.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 		findig.tools.protector »

 Source code for findig.tools.protector.scopeutil

"""
These functions are used protectors to implement :ref:`scoping <auth-scopes>`.
"""

import re

#: A special scope item that implicitly encapsulates all other scope items
ANY = {"$^&#THISISGARBAGE#*@&@#$*@$&DFDF#&#@&@&##*&@DHJGDJH#@&*^@#*+crud"}

[docs]def normalize_scope_items(scopes, default_mode="r", raise_err=True):
 """
 Return a set of scope items that have been normalized.

 A normalized set of scope items is one where every item
 is in the format:

 .. productionlist:: normalized_scope
 norm_scope : `scope_name`+`permission`

 Input scope items are assumed to be 'r' by default. Example,
 the scope item ``user`` will normalize to ``user+r``.

 Input scope items that contain more than one permission are
 expanded to multiple scope items. For example the scope item
 ``user+ud`` is expanded to (``user+u``, ``user+d``).

 Note that permissions are atomic, and none implies another.
 For example, ``user+u`` will expand to ``user+u`` and NOT
 (``user+r``, ``user+u``).

 :param scopes: A list of :ref:`scope items <auth-scopes>`.
 :param default_mode: The permission that should be assumed if one is omitted.
 :param raise_err: If ``True``, malformed scopes will raise a :class:`ValueError`. Otherwise
 they are omitted.
 """

 normalized = set()
 rep = re.compile(r'^(?P<item>(?:[^\W\d_]|[!#-*,-\[\]-~])+)(?:\+(?P<permissions>[crud]+))?$', re.U)

 for item in scopes:
 match = rep.fullmatch(item)
 if match is not None:
 item = match.group("item")
 permissions = match.group("permissions") or default_mode

 for p in permissions:
 normalized.add("{item}+{p}".format(**locals()))
 elif raise_err:
 raise ValueError(item)

 return normalized

[docs]def check_encapsulates(root, child, sep="/"):
 """
 Check that one scope item encapsulates of another.

 A :token:`scope <auth-scopes>` item encapsulates when it is a super-scope
 of the other, and when its permissions are a superset of the other's
 permissions.

 This is used to implement sub-scopes, where permissions granted on
 a broad scope can be used to imply permissions for a sub-scope. By default,
 sub-scopes are denoted by a preceeding '/'.

 For example, a scope permission if ``user+r`` is granted to an agent, then
 that agent is also implied to have been granted ``user/emails+r``,
 ``user/friends+r`` and so on.

 :param root: A super-scope
 :param child: A potential sub-scope
 :param sep: The separator that is used to denote sub-scopes.
 """

 if root == ANY:
 return True

 root_fragment, root_permissions = root.split("+")
 child_fragment, child_permissions = child.split("+")

 if sep is None:
 # In this case, disable checking for branched scope items, but enable
 # checking for scope items with a subset of the permissions.
 rep = re.compile("^{0}$".format(re.escape(root_fragment)), re.U)
 else:
 root_fragment = root_fragment[:-1] if root_fragment.endswith(sep) else root_fragment
 # Use a regular expression to verify that the child fragment is indeed a sub
 # scope of the root fragment. It checks
 rep = re.compile("^({0})$|({0})/".format(re.escape(root_fragment)), re.U)

 root_permissions = set(root_permissions)
 child_permissions = set(child_permissions)

 if not root_permissions.issuperset(child_permissions):
 return False

 elif not rep.match(child_fragment):
 return False

 else:
 return True

def find_encapsulating_scope(scope, scopes, sep="/"):
 for scp in scopes:
 if check_encapsulates(scp, scopes, "/"):
 return scp
 else:
 return None

[docs]def compress_scope_items(scopes, default_mode="r"):
 """
 Return a set of equivalent scope items that may
 be smaller in size.

 Input scope items must be a normalized set of scope
 items.

 """
 item_hash = {}
 compressed = set()
 default_permissions = set(default_mode)

 # Catalog which permissions have been collected for each scope item
 # fragment
 for item in scopes:
 fragment, p = item.split("+")
 item_hash.setdefault(fragment, set())
 item_hash[fragment].update(p)

 # Rebuild the set of scopes from catalog, dropping
 # fragments that are covered by shorter fragments
 # in the catalog
 for fragment in item_hash:
 permissions = item_hash[fragment]
 parts = fragment.split("/")

 for i in range(len(parts)):
 frag = "/".join(parts[:i])
 if item_hash.get(frag, set()).issuperset(permissions):
 break
 else:
 if permissions == default_permissions:
 compressed.add(fragment)
 else:
 compressed.add("+".join((fragment, "".join(permissions))))

 return compressed

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/tools/counter.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.tools.counter

"""
The :mod:`findig.tools.counter` module defines the :class:`Counter` tool,
which can be used as a hit counter for your application. Counters can
count hits to a particular resource, or globally within the application.

"""

from abc import ABCMeta, abstractmethod
from collections import Counter as PyCounter, namedtuple
from datetime import datetime, timedelta
from itertools import chain, combinations
from functools import partial, reduce, total_ordering
from numbers import Integral
from threading import Lock
import heapq
import pickle

from werkzeug.utils import validate_arguments

from findig.context import ctx

[docs]class Counter:
 """
 A :class:`Counter` counter keeps track of hits (requests) made on an
 application and its resources.

 :param app: The findig application whose requests the counter will track.
 :type app: :class:`findig.App`, or a subclass like :class:`findig.json.App`.
 :param duration: If given, the counter will only track hits that
 occurred less than this duration before the current time.
 Otherwise, all hits are tracked.
 :type duration: :class:`datetime.timedelta` or int representing seconds.
 :param storage: A subclass of :class:`AbstractLog` that should be used
 to store hits. By default, the counter will use a thread-safe,
 in-memory storage class.

 """

 any = [] # just needed an unhashable object here

 def __init__(self, app=None, duration=-1, storage=None):
 self.logs = {}
 self.callbacks = {
 'before': {None:[]},
 'after': {None:[]},
 }
 self.duration = duration
 self.partitioners = {}
 self.log_cls = _HitLog if storage is None else storage

 if app is not None:
 self.attach_to(app)

[docs] def attach_to(self, app):
 """
 Attach the counter to a findig application.

 .. note:: This is called automatically for any app that is passed
 to the counter's constructor.

 By attaching the counter to a findig application, the counter is
 enabled to wrap count hits to the application and fire callbacks.

 :param app: The findig application whose requests the counter will
 track.
 :type app: :class:`findig.App`, or a subclass like
 :class:`findig.json.App`.

 """
 app.context(self)

[docs] def partition(self, name, fgroup=None):
 """
 Create a partition that is tracked by the counter.

 A partition can be thought of as a set of mutually exclusive
 groups that hits fall into, such that each hit can only belong to
 one group in any single partition. For example, if we
 partition a counter by the IP address of the requesting clients,
 each possible client address can be thought of as one group, since
 it's only possible for any given hit to come from just one of those
 addresses.

 For every partition, a *grouping function* must be supplied to help
 the counter determine which group a hit belongs to. The
 grouping function takes a request as its parameter, and returns
 a hashable result that identifies the group. For example, if we
 partition by IP address, our grouping function can either return
 the IP address's string representation or 32-bit (for IPv4)
 integer value.

 By setting up partitions, we can query a counter for the number of
 hits belonging to a particular group in any of our partitions. For
 example, if we wanted to count the number GET requests, we could
 partition the counter on the request method (here our groups would
 be GET, PUT, POST, etc) and query the counter for the number of
 hits in the GET group in our request method partition::

 counter = Counter(app)

 # Create a partition named 'method', which partitions our
 # hits by the request method (in uppercase).
 counter.partition('method', lambda request: request.method.upper())

 # Now we can query the counter for hits belonging to the 'GET'
 # group in our 'method' partition
 hits = counter.hits()
 number_of_gets = hits.count(method='GET')

 :param name: The name for our partition.
 :param fgroup: The grouping function for the partition. It must]
 be a callable that takes a request and returns a hashable
 value that identifies the group that the request falls into.

 This method can be used as a decorator factory::

 @counter.partition('ip')
 def getip(request):
 return request.remote_addr

 A counter may define more than one partition.

 """
 def add_partitioner(keyfunc):
 self.partitioners[name] = keyfunc
 return keyfunc

 if fgroup is not None:
 return add_partitioner(fgroup)
 else:
 return add_partitioner

 def _register_cb(self, when, n, callback, args):
 allowed_args = ['until', 'after', 'resource']
 allowed_args.extend(self.partitioners)
 for a in args:
 if a not in allowed_args:
 raise TypeError("Unknown argument: {}".format(a))

 key = args.pop('resource').name if 'resource' in args else None
 self.callbacks[when].setdefault(key, [])
 self.callbacks[when][key].append((callback, n, args))

[docs] def every(self, n, callback=None, **args):
 """
 Call a callback every *n* hits.

 :param resource: If given, the callback will be called on every
 n hits to the resource.
 :param after: If given, the callback won't be called until *after*
 this number of hits; it will be called on the (after+1)th hit
 and every nth hit thereafter.
 :param until: If given, the callback won't be called after this
 number of hits; it will be called up to and including this
 number of hits.

 If partitions have been set up (see :meth:`partition`), additional
 keyword arguments can be given as ``{partition_name}={group}``. In
 this case, the hits are filtered down to those that match the
 partition before issuing callbacks. For example, we can run some
 code on every 100th GET request after the first 1000 like this::

 counter.partition('method', lambda r: r.method.upper())

 @counter.every(100, after=1000, method='GET')
 def on_one_hundred_gets(method):
 pass

 Furthermore, if we wanted to issue a callback on every 100th
 request of any specific method, we can do this::

 @counter.every(100, method=counter.any)
 def on_one_hundred(method):
 pass

 The above code is different from simply ``every(100, callback)``
 in that ``every(100, callback)`` will call the callback on every
 100th request received, while the example will call the callback
 of every 100th request of a particular method (every 100th GET,
 every 100th PUT, every 100th POST etc).

 Whenever partition specs are used to register callbacks,
 then the callback must take a named argument matching the
 partition name, which will contain the partition group for the
 request that triggered the callback.

 """
 def decorator(callback):
 self._register_cb('before', n, callback, args)
 return callback

 if callback is not None:
 return decorator(callback)
 else:
 return decorator

[docs] def after_every(self, n, callback=None, **args):
 """
 Call a callback after every *n* hits.

 This method works exactly like :meth:`every` except that
 callbacks registered with :meth:`every` are called before the
 request is handled (and therefore can throw errors that interupt
 the request) while callbacks registered with this function are
 run after a request has been handled.
 """
 def decorator(callback):
 self._register_cb('after', n, callback, args)
 return callback

 if callback is not None:
 return decorator(callback)
 else:
 return decorator

[docs] def at(self, n, callback=None, **args):
 """
 Call a callback on the *nth* hit.

 :param resource: If given, the callback will be called on every
 n hits to the resource.

 Like :meth:`every`, this function can be called with partition
 specifications.

 This function is equivalent to ``every(1, after=n-1, until=n)``
 """
 return self.every(1, callback=callback, after=n-1, until=n, **args)

[docs] def after(self, n, callback=None, **args):
 """
 Call a callback after the *nth* hit.

 This method works exactly like :meth:`at` except that
 callbacks registered with :meth:`at` are called before the
 request is handled (and therefore can throw errors that interupt
 the request) while callbacks registered with this function are
 run after a request has been handled.
 """
 return self.after_every(1, callback=callback, after=n-1, until=n, **args)

[docs] def hits(self, resource=None):
 """
 Get the hits that have been recorded by the counter.

 The result can be used to query the number of
 total hits to the application or resource, as well as the number
 of hits belonging to specific partition groups::

 # Get the total number of hits
 counter.hits().count()

 # Get the number of hits belonging to a partition group
 counter.hits().count(method='GET')

 The result is also an iterable of (:class:`datetime.datetime`,
 partition_mapping) objects.

 :param resource: If given, only hits for this resource will be
 retrieved.
 """
 if resource is None:
 return reduce(
 lambda x,y: x + y,
 self.logs.values(),
 self.log_cls(self.duration, None)
)
 else:
 self.logs.setdefault(resource.name, self.log_cls(self.duration, resource))
 return self.logs[resource.name]

 def __call__(self):
 # Calling the counter registers a 'hit'.
 request = ctx.request
 resource = ctx.resource

 self.logs.setdefault(resource.name, self.log_cls(self.duration, resource))
 hit_log = self.logs[resource.name]
 partitions = {name: func(request) for name, func in self.partitioners.items()}
 hit_log.track(partitions)

 fire_callbacks = partial(self._fire_cb_funcs, hit_log, resource,
 partitions)

 fire_callbacks('before')

 yield

 fire_callbacks('after')

 def _fire_cb_funcs(self, hit_log, resource, partitions, group):
 callbacks = self.callbacks[group]
 callbacks.setdefault(resource.name, [])
 callbacks = chain(callbacks[resource.name], callbacks[None])

 #@counter.every(1, after=1000, method=any)

 for cb_func, n, args in callbacks:
 # {'ip': counter.any, 'method': 'PUT'}
 partby = {a:args[a] for a in args if a in self.partitioners}
 # {'ip': '255.215.213.32', 'method': 'GET'}
 request_vals = {k:partitions[k] for k in partby}
 count = hit_log.count(**request_vals)

 if partby:
 # Actually verify that the callback restrictions apply to
 # this request
 unmatched = [p for p,v in partby.items()
 if not (v == self.any or v == partitions[p])]
 if unmatched:
 continue

 if 'until' in args and args['until'] < count:
 continue

 if 'after' in args and count <= args['after']:
 continue

 if (count - args.get('after', 0) - 1) % n == 0:
 cb_func(**request_vals)

[docs]class AbstractLog(metaclass=ABCMeta):
 """
 Abstract base for a storage class for hit records.

 This module provides a thread-safe, in-memory concrete implementation
 that is used by default.
 """

 @abstractmethod
[docs] def __init__(self, duration, resource):
 """
 Initialize the abstract log

 All implementations must support this signature for their
 constructor.

 :param duration: The length of time for which the log should
 store records. Or if -1 is given, the log should store all
 records indefinitely.
 :type duration: :class:`datetime.timedelta` or int representing seconds.
 :param resource: The resource for which the log will store records.
 """

 @abstractmethod
[docs] def __iter__(self):
 """
 Iter the stored hits.

 Each item iterated must be a 2-tuple in the form
 (:class:`datetime.datetime`, partitions).

 """

 @abstractmethod
[docs] def track(self, partitions):
 """
 Store a hit record

 :param partitions: A mapping from partition names to the group
 that the hit matches for the partition. See
 :meth:`Counter.partition`.

 """

 @abstractmethod
[docs] def count(self, **partition_spec):
 """
 Return the number of hits stored.

 If no keyword arguments are given, then the total number of hits
 stored should be returned. Otherwise, keyword arguments must be
 in the form ``{partition_name}={group}``. See
 :meth:`Counter.partition`.
 """

 def __add__(self, other):
 if isinstance(other, AbstractLog):
 return _CompositeLog(self, other)
 else:
 return NotImplemented

class _CompositeLog(AbstractLog):
 # This isn't really a storage class so much as it's a convenience
 # class for stitching logs together
 def __init__(self, first, second, *others):
 self._logs = [first, second]
 self._logs.extend(others)

 def __iter__(self):
 yield from chain.from_iterable(self._logs)

 def track(self, partitions):
 raise NotImplementedError("Composite log is read only.")

 def count(self, **partitions):
 return sum(map(lambda l: l.count(**partitions), self._logs))

class _HitLog(AbstractLog):
 # This is a storage class that keep track of the hits that have
 # occurred over a given duration.
 # This particular implementation keeps track of hits in-memory.
 def __init__(self, duration, _): # last argument is resource (or None), but it is unused.
 self._hits = []
 self._delta = duration if isinstance(duration, timedelta) \
 else timedelta(seconds=duration)
 self._thread_lock = Lock()
 self._counter = PyCounter()

 def _prune(self):
 if self._delta.total_seconds() < 0:
 # negative seconds means keep everything.
 return

 now = datetime.now()
 with self._thread_lock:
 while self._hits and (now - self._hits[0][0]) > self._delta:
 time, pickled_counter_keys = heapq.heappop(self._hits)
 self._counter.subtract(pickle.loads(pickled_counter_keys))

 def _generate_counter_keys(self, partitions):
 sub_keys = chain.from_iterable(
 combinations(partitions, r) for r in range(1, len(partitions)+1)
)

 for key_list in sub_keys:
 counter_key = tuple(sorted(map(lambda k: (k, partitions[k]), key_list)))
 yield counter_key

 def track(self, partitions):
 now = datetime.now()

 with self._thread_lock:
 counter_keys = tuple(self._generate_counter_keys(partitions))
 heapq.heappush(self._hits, (now, pickle.dumps(counter_keys)))
 self._counter.update(counter_keys)

 def count(self, **partitions):
 self._prune()

 if not partitions:
 return len(self._hits)

 else:
 counter_key = tuple(sorted(partitions.items()))
 return self._counter[counter_key]

 def __add__(self, other):
 if isinstance(other, _HitLog):
 if self._delta != other._delta:
 return NotImplemented
 else:
 new_log = _HitLog(self._delta, None)

 new_log._hits.extend(self._hits)
 new_log._hits.extend(other._hits)
 heapq.heapify(new_log._hits)

 new_log._counter.update(self._counter)
 new_log._counter.update(other._counter)

 return new_log

 else:
 return NotImplemented

 def __iter__(self):
 ascending = heapq.nsmallest(self.count(), self._hits)
 for time, partitions in ascending:
 yield Hit(time, partitions)

 def __len__(self):
 return self.count()

 def __repr__(self):
 return "HitLog({})".format(self.count())

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/findig/tools/protector.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 		findig »

 Source code for findig.tools.protector

from abc import ABCMeta, abstractmethod
from collections.abc import Callable
from functools import partial

from werkzeug.exceptions import Forbidden, Unauthorized

from . import scopeutil
from findig.context import ctx
from findig.dispatcher import AbstractResource

[docs]class GateKeeper(metaclass=ABCMeta):
 """
 To implement a gatekeeper, implement at least :meth:`check_auth` and
 :meth:`get_username`.
 """
 @abstractmethod
[docs] def check_auth(self):
 """
 Try to perform an authorization check using the request context variables.

 Perform the authorization check using whatever mechanism that the
 gatekeeper's authorization is handled. If authorization fails, then
 an :class:`~werkzeug.exceptions.Unauthorized` error should be raised.

 Return a 'grant' that will be used to query the gatekeeper about the
 authorization.

 """

 @abstractmethod
[docs] def get_username(self, grant):
 """Return the username/id of the user that authorized the grant."""

[docs] def get_scopes(self, grant):
 """Return a list of scopes that the grant is authorized with. (Optional)"""
 # By default the gatekeeper will not consider scopes
 return [scopeutil.ANY]

[docs] def get_clientid(self, grant):
 """Return the client that sent the request to the grant. (Optional)"""
 # By default the gatekeeper doesn't grant scope
 return None

class DefaultGateKeeper(GateKeeper):
 """
 A concrete :class:`GateKeeper` that does not perform any authorizations.

 When used with a protector, this gatekeeper will result in all guarded resources being
 blocked. It's intended to be replaced with a different implementation of the
 GateKeeper class.
 """
 def check_auth(self):
 import warnings
 warnings.warn("The protector guarding this resource is using the "
 "default gate keeper, which denies all requests to this "
 "resource. If a different behavior is desired (likely), "
 "please configure the protector with a different gatekeeper.")
 raise Unauthorized

 def get_username(self, grant):
 raise NotImplementedError

[docs]class Protector:
 """
 Protector(app=None, subscope_separator="/", gatekeeper=None)

 A protector is responsible for guarding access to a restricted
 resource::

 from findig import App

 app = App()
 protector = Protector(app)
 protector.guard(resource)

 :param app: A findig application instance.
 :param subscope_separator: A separator used to denote sub-scopes.
 :param gatekeeper: A concrete implementation of :class:`GateKeeper`. If
 not provided, the protector will deny all requests to its guarded
 resources.
 """

 _default_permissions = {"get": "r", "post": "c", "patch": "cu", "delete": "d", "head": "r"}

 def __init__(self, app=None, subscope_separator="/", gatekeeper=DefaultGateKeeper()):
 self._subsep = subscope_separator
 self._gatekeeper = gatekeeper
 self._guard_specs = {}

 if app is not None:
 self.attach_to(app)

[docs] def attach_to(self, app):
 """
 Attach the protector to a findig application.

 .. note:: This is called automatically for any app that is passed
 to the protector's constructor.

 By attaching the protector to a findig application, the protector is
 enabled to intercept requests made to the application, performing authorization
 checks as needed.

 :param app: A findig application whose requests the protector will
 intercept.
 :type app: :class:`findig.App`, or a subclass like
 :class:`findig.json.App`.

 """
 app.context(self.auth)

[docs] def guard(self, *args):
 """
 guard(resource[, scope[, scope [, ...]]])

 Guard a resource against unauthorized access. If given, the
 :token:`scopes <resource_scope>`
 will be used to protect the resource (similar to oauth) such that
 only requests with the appropriate :token:`scope <auth_scope>`
 will be allowed through.

 If this function is called more than once, then a grant by *any*
 of the specifications will allow the request to access the resource.
 For example::

 # This protector will allow requests to res with BOTH
 # "user" and "friends" scope, but it will also allow
 # requests with only "foo" scope.
 protector.guard(res, "user", "friends")
 protector.guard(res, "foo")

 A protector can also be used to decorate resources for guarding::

 @protector.guard
 @app.route("/foo")
 def foo():
 # This resource is guarded with no scopes; any authenticated
 # request will be allowed through.
 pass

 @protector.guard("user/email_addresses")
 @app.route("/bar")
 def bar():
 # This resource is guarded with "user/email_addresses" scope,
 # so that only requests authorized with that scope will be
 # allowed to access the resource.
 pass

 @protector.guard("user/phone_numbers", "user/contact")
 @app.route("/baz")
 def baz():
 # This resource is guarded with both "user/phone_numbers" and
 # "user/contact" scope, so requests must be authorized with both
 # to access this resource.
 pass

 # NOTE: Depending on the value passed for 'subscope_separator' to the
 # protector's constructor, authenticated requests authorized with "user" scope
 # will also be allowed to access all of these resources (default behavior).

 """
 def add_resource(resource, scopes=None):
 self._guard_specs.setdefault(resource.name, []).append(
 [] if scopes is None else list(scopes)
)
 return resource

 if len(args) == 0:
 return add_resource

 elif isinstance(args[0], AbstractResource):
 return add_resource(args[0], args[1:])

 else:
 return partial(add_resource, scopes=args)

 def auth(self):
 resource = ctx.resource
 request = ctx.request
 auth_info = {}

 # Check if the request is guarded
 if resource.name in self._guard_specs:
 grant = self._gatekeeper.check_auth()
 scopes = auth_info['scopes'] = self._gatekeeper.get_scopes(grant)
 auth_info['user'] = self._gatekeeper.get_username(grant)
 auth_info['client'] = self._gatekeeper.get_clientid(grant)

 permissions = self._default_permissions.get(request.method.lower(), "crud")

 # Try to find a guard who will let the request through
 for scope_guard in self._guard_specs[resource.name]:
 for scope in scope_guard:
 # Affix the request permissions to the required scope
 scope = "{}+{}".format(scope, permissions)

 if not scopeutil.find_granting_scope(scope, scopes, self._subsep):
 # This guard is looking for a scope that the request
 # can't satisfy, so give up on the guard.
 break
 else:
 # The request satisfies all the scopes that the guard is looking
 # for, so stop looking.
 break
 else:
 # Unable to find a guard that will let the request through with the
 # given scope, so raise an error.
 raise InsufficientScope(self._guard_specs[resource.name])

 # Yielding this value will place it on the request context with the same name
 # as this function: 'findig.context.ctx.auth'.
 yield auth_info

 @property
 def authenticated_user(self):
 """Get the username/id of the authenticated user for the current request."""
 return ctx.auth['user']

 @property
 def authenticated_client(self):
 """Get the client id of the authenticated client for the current request, or None."""
 return ctx.auth['client']

 @property
 def authorized_scope(self):
 """Get the a list of authorized scopes for the current request."""
 return ctx.auth['scopes']

[docs]class BasicProtector(GateKeeper, Protector):
 """
 A :class:`Protector` that implements HTTP Basic Auth.

 While straightforward, this protector has a few security considerations:

 * Credentials are transmitted in plain-text. If you must use this
 protector, then at the very least the HTTPS protocol should be
 used.

 * Credentials are transmitted with *each request*. It requires that clients
 either store user credentials, or prompt the user for their credentials at
 frequent intervals (possibly every request).

 * This protector offers no scoping support; a grant from this protector
 allows unlimited access to any resource that it guards.

 """
 def __init__(self, app=None, subscope_separator="/", auth_func=None, realm="guarded"):
 super().__init__(app=app, subscope_separator=subscope_separator, gatekeeper=self)
 self._fauth = auth_func
 self._realm = realm

[docs] def auth_func(self, fauth):
 """Supply an application-defined function that performs authentication.

 The function has the signature ``fauth(username:str, password:str) -> bool``
 and should return whether or not the credentials given authenticate
 successfully.

 auth_func is usable as a decorator::

 @protector.auth_func
 def check_credentials(usn, pwd):
 user = db.get_obj(usn)
 return user.password == pwd

 """
 self._fauth = fauth
 return fauth

 def check_auth(self):
 request = ctx.request
 resource = ctx.resource
 auth = request.authorization

 if self._fauth is None:
 import warnings
 warnings.warn("The HTTP basic auth protector doesn't know how to validate "
 "credentials. Please supply it with an auth_func parameter. "
 "See the documentation for "
 "findig.tools.protector.BasicProtector.auth_func.")

 if auth and self._fauth(auth.username, auth.password):
 return auth.username

 else:
 realm = self._realm(resource) if isinstance(self._realm, Callable) else self._realm
 response = Unauthorized().get_response(request)
 response.headers["WWW-Authenticate"] = "Basic realm=\"{}\"".format(realm)
 raise Unauthorized(response=response)

 def get_username(self, grant:"This is the username"):
 return grant

class InsufficientScope(Forbidden):
 pass

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_modules/werkzeug/wrappers.html

 Navigation

 		
 index

 		
 modules |

 		Findig 0.1.0 documentation »

 		Module code »

 Source code for werkzeug.wrappers

-*- coding: utf-8 -*-
"""
 werkzeug.wrappers
    ~~~~~~~~~~~~~~~~~

    The wrappers are simple request and response objects which you can
    subclass to do whatever you want them to do.  The request object contains
    the information transmitted by the client (webbrowser) and the response
    object contains all the information sent back to the browser.

    An important detail is that the request object is created with the WSGI
    environ and will act as high-level proxy whereas the response object is an
    actual WSGI application.

    Like everything else in Werkzeug these objects will work correctly with
    unicode data.  Incoming form data parsed by the response object will be
    decoded into an unicode object if possible and if it makes sense.


    :copyright: (c) 2014 by the Werkzeug Team, see AUTHORS for more details.
    :license: BSD, see LICENSE for more details.
"""
from functools import update_wrapper
from datetime import datetime, timedelta

from werkzeug.http import HTTP_STATUS_CODES, \
     parse_accept_header, parse_cache_control_header, parse_etags, \
     parse_date, generate_etag, is_resource_modified, unquote_etag, \
     quote_etag, parse_set_header, parse_authorization_header, \
     parse_www_authenticate_header, remove_entity_headers, \
     parse_options_header, dump_options_header, http_date, \
     parse_if_range_header, parse_cookie, dump_cookie, \
     parse_range_header, parse_content_range_header, dump_header
from werkzeug.urls import url_decode, iri_to_uri, url_join
from werkzeug.formparser import FormDataParser, default_stream_factory
from werkzeug.utils import cached_property, environ_property, \
     header_property, get_content_type
from werkzeug.wsgi import get_current_url, get_host, \
     ClosingIterator, get_input_stream, get_content_length
from werkzeug.datastructures import MultiDict, CombinedMultiDict, Headers, \
     EnvironHeaders, ImmutableMultiDict, ImmutableTypeConversionDict, \
     ImmutableList, MIMEAccept, CharsetAccept, LanguageAccept, \
     ResponseCacheControl, RequestCacheControl, CallbackDict, \
     ContentRange, iter_multi_items
from werkzeug._internal import _get_environ
from werkzeug._compat import to_bytes, string_types, text_type, \
     integer_types, wsgi_decoding_dance, wsgi_get_bytes, \
     to_unicode, to_native, BytesIO


def _run_wsgi_app(*args):
    """This function replaces itself to ensure that the test module is not
    imported unless required.  DO NOT USE!
    """
    global _run_wsgi_app
    from werkzeug.test import run_wsgi_app as _run_wsgi_app
    return _run_wsgi_app(*args)


def _warn_if_string(iterable):
    """Helper for the response objects to check if the iterable returned
    to the WSGI server is not a string.
    """
    if isinstance(iterable, string_types):
        from warnings import warn
        warn(Warning('response iterable was set to a string.  This appears '
                     'to work but means that the server will send the '
                     'data to the client char, by char.  This is almost '
                     'never intended behavior, use response.data to assign '
                     'strings to the response object.'), stacklevel=2)


def _assert_not_shallow(request):
    if request.shallow:
        raise RuntimeError('A shallow request tried to consume '
                           'form data.  If you really want to do '
                           'that, set `shallow` to False.')


def _iter_encoded(iterable, charset):
    for item in iterable:
        if isinstance(item, text_type):
            yield item.encode(charset)
        else:
            yield item


class BaseRequest(object):
    """Very basic request object.  This does not implement advanced stuff like
    entity tag parsing or cache controls.  The request object is created with
    the WSGI environment as first argument and will add itself to the WSGI
    environment as ``'werkzeug.request'`` unless it's created with
    `populate_request` set to False.

    There are a couple of mixins available that add additional functionality
    to the request object, there is also a class called `Request` which
    subclasses `BaseRequest` and all the important mixins.

    It's a good idea to create a custom subclass of the :class:`BaseRequest`
    and add missing functionality either via mixins or direct implementation.
    Here an example for such subclasses::

        from werkzeug.wrappers import BaseRequest, ETagRequestMixin

        class Request(BaseRequest, ETagRequestMixin):
            pass

    Request objects are **read only**.  As of 0.5 modifications are not
    allowed in any place.  Unlike the lower level parsing functions the
    request object will use immutable objects everywhere possible.

    Per default the request object will assume all the text data is `utf-8`
    encoded.  Please refer to `the unicode chapter <unicode.txt>`_ for more
    details about customizing the behavior.

    Per default the request object will be added to the WSGI
    environment as `werkzeug.request` to support the debugging system.
    If you don't want that, set `populate_request` to `False`.

    If `shallow` is `True` the environment is initialized as shallow
    object around the environ.  Every operation that would modify the
    environ in any way (such as consuming form data) raises an exception
    unless the `shallow` attribute is explicitly set to `False`.  This
    is useful for middlewares where you don't want to consume the form
    data by accident.  A shallow request is not populated to the WSGI
    environment.

    .. versionchanged:: 0.5
       read-only mode was enforced by using immutables classes for all
       data.
    """

    #: the charset for the request, defaults to utf-8
    charset = 'utf-8'

    #: the error handling procedure for errors, defaults to 'replace'
    encoding_errors = 'replace'

    #: the maximum content length.  This is forwarded to the form data
    #: parsing function (:func:`parse_form_data`).  When set and the
    #: :attr:`form` or :attr:`files` attribute is accessed and the
    #: parsing fails because more than the specified value is transmitted
    #: a :exc:`~werkzeug.exceptions.RequestEntityTooLarge` exception is raised.
    #:
    #: Have a look at :ref:`dealing-with-request-data` for more details.
    #:
    #: .. versionadded:: 0.5
    max_content_length = None

    #: the maximum form field size.  This is forwarded to the form data
    #: parsing function (:func:`parse_form_data`).  When set and the
    #: :attr:`form` or :attr:`files` attribute is accessed and the
    #: data in memory for post data is longer than the specified value a
    #: :exc:`~werkzeug.exceptions.RequestEntityTooLarge` exception is raised.
    #:
    #: Have a look at :ref:`dealing-with-request-data` for more details.
    #:
    #: .. versionadded:: 0.5
    max_form_memory_size = None

    #: the class to use for `args` and `form`.  The default is an
    #: :class:`~werkzeug.datastructures.ImmutableMultiDict` which supports
    #: multiple values per key.  alternatively it makes sense to use an
    #: :class:`~werkzeug.datastructures.ImmutableOrderedMultiDict` which
    #: preserves order or a :class:`~werkzeug.datastructures.ImmutableDict`
    #: which is the fastest but only remembers the last key.  It is also
    #: possible to use mutable structures, but this is not recommended.
    #:
    #: .. versionadded:: 0.6
    parameter_storage_class = ImmutableMultiDict

    #: the type to be used for list values from the incoming WSGI environment.
    #: By default an :class:`~werkzeug.datastructures.ImmutableList` is used
    #: (for example for :attr:`access_list`).
    #:
    #: .. versionadded:: 0.6
    list_storage_class = ImmutableList

    #: the type to be used for dict values from the incoming WSGI environment.
    #: By default an
    #: :class:`~werkzeug.datastructures.ImmutableTypeConversionDict` is used
    #: (for example for :attr:`cookies`).
    #:
    #: .. versionadded:: 0.6
    dict_storage_class = ImmutableTypeConversionDict

    #: The form data parser that shoud be used.  Can be replaced to customize
    #: the form date parsing.
    form_data_parser_class = FormDataParser

    #: Optionally a list of hosts that is trusted by this request.  By default
    #: all hosts are trusted which means that whatever the client sends the
    #: host is will be accepted.
    #:
    #: This is the recommended setup as a webserver should manually be set up
    #: to only route correct hosts to the application, and remove the
    #: `X-Forwarded-Host` header if it is not being used (see
    #: :func:`werkzeug.wsgi.get_host`).
    #:
    #: .. versionadded:: 0.9
    trusted_hosts = None

    #: Indicates whether the data descriptor should be allowed to read and
    #: buffer up the input stream.  By default it's enabled.
    #:
    #: .. versionadded:: 0.9
    disable_data_descriptor = False

    def __init__(self, environ, populate_request=True, shallow=False):
        self.environ = environ
        if populate_request and not shallow:
            self.environ['werkzeug.request'] = self
        self.shallow = shallow

    def __repr__(self):
        # make sure the __repr__ even works if the request was created
        # from an invalid WSGI environment.  If we display the request
        # in a debug session we don't want the repr to blow up.
        args = []
        try:
            args.append("'%s'" % to_native(self.url, self.url_charset))
            args.append('[%s]' % self.method)
        except Exception:
            args.append('(invalid WSGI environ)')

        return '<%s %s>' % (
            self.__class__.__name__,
            ' '.join(args)
        )

    @property
    def url_charset(self):
        """The charset that is assumed for URLs.  Defaults to the value
        of :attr:`charset`.

        .. versionadded:: 0.6
        """
        return self.charset

    @classmethod
    def from_values(cls, *args, **kwargs):
        """Create a new request object based on the values provided.  If
        environ is given missing values are filled from there.  This method is
        useful for small scripts when you need to simulate a request from an URL.
        Do not use this method for unittesting, there is a full featured client
        object (:class:`Client`) that allows to create multipart requests,
        support for cookies etc.

        This accepts the same options as the
        :class:`~werkzeug.test.EnvironBuilder`.

        .. versionchanged:: 0.5
           This method now accepts the same arguments as
           :class:`~werkzeug.test.EnvironBuilder`.  Because of this the
           `environ` parameter is now called `environ_overrides`.

        :return: request object
        """
        from werkzeug.test import EnvironBuilder
        charset = kwargs.pop('charset', cls.charset)
        kwargs['charset'] = charset
        builder = EnvironBuilder(*args, **kwargs)
        try:
            return builder.get_request(cls)
        finally:
            builder.close()

    @classmethod
    def application(cls, f):
        """Decorate a function as responder that accepts the request as first
        argument.  This works like the :func:`responder` decorator but the
        function is passed the request object as first argument and the
        request object will be closed automatically::

            @Request.application
            def my_wsgi_app(request):
                return Response('Hello World!')

        :param f: the WSGI callable to decorate
        :return: a new WSGI callable
        """
        #: return a callable that wraps the -2nd argument with the request
        #: and calls the function with all the arguments up to that one and
        #: the request.  The return value is then called with the latest
        #: two arguments.  This makes it possible to use this decorator for
        #: both methods and standalone WSGI functions.
        def application(*args):
            request = cls(args[-2])
            with request:
                return f(*args[:-2] + (request,))(*args[-2:])
        return update_wrapper(application, f)

    def _get_file_stream(self, total_content_length, content_type, filename=None,
                        content_length=None):
        """Called to get a stream for the file upload.

        This must provide a file-like class with `read()`, `readline()`
        and `seek()` methods that is both writeable and readable.

        The default implementation returns a temporary file if the total
        content length is higher than 500KB.  Because many browsers do not
        provide a content length for the files only the total content
        length matters.

        :param total_content_length: the total content length of all the
                                     data in the request combined.  This value
                                     is guaranteed to be there.
        :param content_type: the mimetype of the uploaded file.
        :param filename: the filename of the uploaded file.  May be `None`.
        :param content_length: the length of this file.  This value is usually
                               not provided because webbrowsers do not provide
                               this value.
        """
        return default_stream_factory(total_content_length, content_type,
                                      filename, content_length)

    @property
    def want_form_data_parsed(self):
        """Returns True if the request method carries content.  As of
        Werkzeug 0.9 this will be the case if a content type is transmitted.

        .. versionadded:: 0.8
        """
        return bool(self.environ.get('CONTENT_TYPE'))

    def make_form_data_parser(self):
        """Creates the form data parser.  Instanciates the
        :attr:`form_data_parser_class` with some parameters.

        .. versionadded:: 0.8
        """
        return self.form_data_parser_class(self._get_file_stream,
                                           self.charset,
                                           self.encoding_errors,
                                           self.max_form_memory_size,
                                           self.max_content_length,
                                           self.parameter_storage_class)

    def _load_form_data(self):
        """Method used internally to retrieve submitted data.  After calling
        this sets `form` and `files` on the request object to multi dicts
        filled with the incoming form data.  As a matter of fact the input
        stream will be empty afterwards.  You can also call this method to
        force the parsing of the form data.

        .. versionadded:: 0.8
        """
        # abort early if we have already consumed the stream
        if 'form' in self.__dict__:
            return

        _assert_not_shallow(self)

        if self.want_form_data_parsed:
            content_type = self.environ.get('CONTENT_TYPE', '')
            content_length = get_content_length(self.environ)
            mimetype, options = parse_options_header(content_type)
            parser = self.make_form_data_parser()
            data = parser.parse(self._get_stream_for_parsing(),
                                mimetype, content_length, options)
        else:
            data = (self.stream, self.parameter_storage_class(),
                    self.parameter_storage_class())

        # inject the values into the instance dict so that we bypass
        # our cached_property non-data descriptor.
        d = self.__dict__
        d['stream'], d['form'], d['files'] = data

    def _get_stream_for_parsing(self):
        """This is the same as accessing :attr:`stream` with the difference
        that if it finds cached data from calling :meth:`get_data` first it
        will create a new stream out of the cached data.

        .. versionadded:: 0.9.3
        """
        cached_data = getattr(self, '_cached_data', None)
        if cached_data is not None:
            return BytesIO(cached_data)
        return self.stream

    def close(self):
        """Closes associated resources of this request object.  This
        closes all file handles explicitly.  You can also use the request
        object in a with statement with will automatically close it.

        .. versionadded:: 0.9
        """
        files = self.__dict__.get('files')
        for key, value in iter_multi_items(files or ()):
            value.close()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, tb):
        self.close()

    @cached_property
    def stream(self):
        """The stream to read incoming data from.  Unlike :attr:`input_stream`
        this stream is properly guarded that you can't accidentally read past
        the length of the input.  Werkzeug will internally always refer to
        this stream to read data which makes it possible to wrap this
        object with a stream that does filtering.

        .. versionchanged:: 0.9
           This stream is now always available but might be consumed by the
           form parser later on.  Previously the stream was only set if no
           parsing happened.
        """
        _assert_not_shallow(self)
        return get_input_stream(self.environ)

    input_stream = environ_property('wsgi.input', 'The WSGI input stream.\n'
        'In general it\'s a bad idea to use this one because you can easily '
        'read past the boundary.  Use the :attr:`stream` instead.')

    @cached_property
    def args(self):
        """The parsed URL parameters.  By default an
        :class:`~werkzeug.datastructures.ImmutableMultiDict`
        is returned from this function.  This can be changed by setting
        :attr:`parameter_storage_class` to a different type.  This might
        be necessary if the order of the form data is important.
        """
        return url_decode(wsgi_get_bytes(self.environ.get('QUERY_STRING', '')),
                          self.url_charset, errors=self.encoding_errors,
                          cls=self.parameter_storage_class)

    @cached_property
    def data(self):
        if self.disable_data_descriptor:
            raise AttributeError('data descriptor is disabled')
        # XXX: this should eventually be deprecated.

        # We trigger form data parsing first which means that the descriptor
        # will not cache the data that would otherwise be .form or .files
        # data.  This restores the behavior that was there in Werkzeug
        # before 0.9.  New code should use :meth:`get_data` explicitly as
        # this will make behavior explicit.
        return self.get_data(parse_form_data=True)

    def get_data(self, cache=True, as_text=False, parse_form_data=False):
        """This reads the buffered incoming data from the client into one
        bytestring.  By default this is cached but that behavior can be
        changed by setting `cache` to `False`.

        Usually it's a bad idea to call this method without checking the
        content length first as a client could send dozens of megabytes or more
        to cause memory problems on the server.

        Note that if the form data was already parsed this method will not
        return anything as form data parsing does not cache the data like
        this method does.  To implicitly invoke form data parsing function
        set `parse_form_data` to `True`.  When this is done the return value
        of this method will be an empty string if the form parser handles
        the data.  This generally is not necessary as if the whole data is
        cached (which is the default) the form parser will used the cached
        data to parse the form data.  Please be generally aware of checking
        the content length first in any case before calling this method
        to avoid exhausting server memory.

        If `as_text` is set to `True` the return value will be a decoded
        unicode string.

        .. versionadded:: 0.9
        """
        rv = getattr(self, '_cached_data', None)
        if rv is None:
            if parse_form_data:
                self._load_form_data()
            rv = self.stream.read()
            if cache:
                self._cached_data = rv
        if as_text:
            rv = rv.decode(self.charset, self.encoding_errors)
        return rv

    @cached_property
    def form(self):
        """The form parameters.  By default an
        :class:`~werkzeug.datastructures.ImmutableMultiDict`
        is returned from this function.  This can be changed by setting
        :attr:`parameter_storage_class` to a different type.  This might
        be necessary if the order of the form data is important.
        """
        self._load_form_data()
        return self.form

    @cached_property
    def values(self):
        """Combined multi dict for :attr:`args` and :attr:`form`."""
        args = []
        for d in self.args, self.form:
            if not isinstance(d, MultiDict):
                d = MultiDict(d)
            args.append(d)
        return CombinedMultiDict(args)

    @cached_property
    def files(self):
        """:class:`~werkzeug.datastructures.MultiDict` object containing
        all uploaded files.  Each key in :attr:`files` is the name from the
        ``<input type="file" name="">``.  Each value in :attr:`files` is a
        Werkzeug :class:`~werkzeug.datastructures.FileStorage` object.

        Note that :attr:`files` will only contain data if the request method was
        POST, PUT or PATCH and the ``<form>`` that posted to the request had
        ``enctype="multipart/form-data"``.  It will be empty otherwise.

        See the :class:`~werkzeug.datastructures.MultiDict` /
        :class:`~werkzeug.datastructures.FileStorage` documentation for
        more details about the used data structure.
        """
        self._load_form_data()
        return self.files

    @cached_property
    def cookies(self):
        """Read only access to the retrieved cookie values as dictionary."""
        return parse_cookie(self.environ, self.charset,
                            self.encoding_errors,
                            cls=self.dict_storage_class)

    @cached_property
    def headers(self):
        """The headers from the WSGI environ as immutable
        :class:`~werkzeug.datastructures.EnvironHeaders`.
        """
        return EnvironHeaders(self.environ)

    @cached_property
    def path(self):
        """Requested path as unicode.  This works a bit like the regular path
        info in the WSGI environment but will always include a leading slash,
        even if the URL root is accessed.
        """
        raw_path = wsgi_decoding_dance(self.environ.get('PATH_INFO') or '',
                                       self.charset, self.encoding_errors)
        return '/' + raw_path.lstrip('/')

    @cached_property
    def full_path(self):
        """Requested path as unicode, including the query string."""
        return self.path + u'?' + to_unicode(self.query_string, self.url_charset)

    @cached_property
    def script_root(self):
        """The root path of the script without the trailing slash."""
        raw_path = wsgi_decoding_dance(self.environ.get('SCRIPT_NAME') or '',
                                       self.charset, self.encoding_errors)
        return raw_path.rstrip('/')

    @cached_property
    def url(self):
        """The reconstructed current URL as IRI.
        See also: :attr:`trusted_hosts`.
        """
        return get_current_url(self.environ,
                               trusted_hosts=self.trusted_hosts)

    @cached_property
    def base_url(self):
        """Like :attr:`url` but without the querystring
        See also: :attr:`trusted_hosts`.
        """
        return get_current_url(self.environ, strip_querystring=True,
                               trusted_hosts=self.trusted_hosts)

    @cached_property
    def url_root(self):
        """The full URL root (with hostname), this is the application
        root as IRI.
        See also: :attr:`trusted_hosts`.
        """
        return get_current_url(self.environ, True,
                               trusted_hosts=self.trusted_hosts)

    @cached_property
    def host_url(self):
        """Just the host with scheme as IRI.
        See also: :attr:`trusted_hosts`.
        """
        return get_current_url(self.environ, host_only=True,
                               trusted_hosts=self.trusted_hosts)

    @cached_property
    def host(self):
        """Just the host including the port if available.
        See also: :attr:`trusted_hosts`.
        """
        return get_host(self.environ, trusted_hosts=self.trusted_hosts)

    query_string = environ_property('QUERY_STRING', '', read_only=True,
        load_func=wsgi_get_bytes, doc=
        '''The URL parameters as raw bytestring.''')
    method = environ_property('REQUEST_METHOD', 'GET', read_only=True,
        load_func=lambda x: x.upper(), doc=
        '''The transmission method. (For example ``'GET'`` or ``'POST'``).''')

    @cached_property
    def access_route(self):
        """If a forwarded header exists this is a list of all ip addresses
        from the client ip to the last proxy server.
        """
        if 'HTTP_X_FORWARDED_FOR' in self.environ:
            addr = self.environ['HTTP_X_FORWARDED_FOR'].split(',')
            return self.list_storage_class([x.strip() for x in addr])
        elif 'REMOTE_ADDR' in self.environ:
            return self.list_storage_class([self.environ['REMOTE_ADDR']])
        return self.list_storage_class()

    @property
    def remote_addr(self):
        """The remote address of the client."""
        return self.environ.get('REMOTE_ADDR')

    remote_user = environ_property('REMOTE_USER', doc='''
        If the server supports user authentication, and the script is
        protected, this attribute contains the username the user has
        authenticated as.''')

    scheme = environ_property('wsgi.url_scheme', doc='''
        URL scheme (http or https).

        .. versionadded:: 0.7''')

    is_xhr = property(lambda x: x.environ.get('HTTP_X_REQUESTED_WITH', '')
                      .lower() == 'xmlhttprequest', doc='''
        True if the request was triggered via a JavaScript XMLHttpRequest.
        This only works with libraries that support the `X-Requested-With`
        header and set it to "XMLHttpRequest".  Libraries that do that are
        prototype, jQuery and Mochikit and probably some more.''')
    is_secure = property(lambda x: x.environ['wsgi.url_scheme'] == 'https',
                         doc='`True` if the request is secure.')
    is_multithread = environ_property('wsgi.multithread', doc='''
        boolean that is `True` if the application is served by
        a multithreaded WSGI server.''')
    is_multiprocess = environ_property('wsgi.multiprocess', doc='''
        boolean that is `True` if the application is served by
        a WSGI server that spawns multiple processes.''')
    is_run_once = environ_property('wsgi.run_once', doc='''
        boolean that is `True` if the application will be executed only
        once in a process lifetime.  This is the case for CGI for example,
        but it's not guaranteed that the exeuction only happens one time.''')


class BaseResponse(object):
    """Base response class.  The most important fact about a response object
    is that it's a regular WSGI application.  It's initialized with a couple
    of response parameters (headers, body, status code etc.) and will start a
    valid WSGI response when called with the environ and start response
    callable.

    Because it's a WSGI application itself processing usually ends before the
    actual response is sent to the server.  This helps debugging systems
    because they can catch all the exceptions before responses are started.

    Here a small example WSGI application that takes advantage of the
    response objects::

        from werkzeug.wrappers import BaseResponse as Response

        def index():
            return Response('Index page')

        def application(environ, start_response):
            path = environ.get('PATH_INFO') or '/'
            if path == '/':
                response = index()
            else:
                response = Response('Not Found', status=404)
            return response(environ, start_response)

    Like :class:`BaseRequest` which object is lacking a lot of functionality
    implemented in mixins.  This gives you a better control about the actual
    API of your response objects, so you can create subclasses and add custom
    functionality.  A full featured response object is available as
    :class:`Response` which implements a couple of useful mixins.

    To enforce a new type of already existing responses you can use the
    :meth:`force_type` method.  This is useful if you're working with different
    subclasses of response objects and you want to post process them with a
    know interface.

    Per default the request object will assume all the text data is `utf-8`
    encoded.  Please refer to `the unicode chapter <unicode.txt>`_ for more
    details about customizing the behavior.

    Response can be any kind of iterable or string.  If it's a string it's
    considered being an iterable with one item which is the string passed.
    Headers can be a list of tuples or a
    :class:`~werkzeug.datastructures.Headers` object.

    Special note for `mimetype` and `content_type`:  For most mime types
    `mimetype` and `content_type` work the same, the difference affects
    only 'text' mimetypes.  If the mimetype passed with `mimetype` is a
    mimetype starting with `text/`, the charset parameter of the response
    object is appended to it.  In contrast the `content_type` parameter is
    always added as header unmodified.

    .. versionchanged:: 0.5
       the `direct_passthrough` parameter was added.

    :param response: a string or response iterable.
    :param status: a string with a status or an integer with the status code.
    :param headers: a list of headers or a
                    :class:`~werkzeug.datastructures.Headers` object.
    :param mimetype: the mimetype for the request.  See notice above.
    :param content_type: the content type for the request.  See notice above.
    :param direct_passthrough: if set to `True` :meth:`iter_encoded` is not
                               called before iteration which makes it
                               possible to pass special iterators though
                               unchanged (see :func:`wrap_file` for more
                               details.)
    """

    #: the charset of the response.
    charset = 'utf-8'

    #: the default status if none is provided.
    default_status = 200

    #: the default mimetype if none is provided.
    default_mimetype = 'text/plain'

    #: if set to `False` accessing properties on the response object will
    #: not try to consume the response iterator and convert it into a list.
    #:
    #: .. versionadded:: 0.6.2
    #:
    #:    That attribute was previously called `implicit_seqence_conversion`.
    #:    (Notice the typo).  If you did use this feature, you have to adapt
    #:    your code to the name change.
    implicit_sequence_conversion = True

    #: Should this response object correct the location header to be RFC
    #: conformant?  This is true by default.
    #:
    #: .. versionadded:: 0.8
    autocorrect_location_header = True

    #: Should this response object automatically set the content-length
    #: header if possible?  This is true by default.
    #:
    #: .. versionadded:: 0.8
    automatically_set_content_length = True

    def __init__(self, response=None, status=None, headers=None,
                 mimetype=None, content_type=None, direct_passthrough=False):
        if isinstance(headers, Headers):
            self.headers = headers
        elif not headers:
            self.headers = Headers()
        else:
            self.headers = Headers(headers)

        if content_type is None:
            if mimetype is None and 'content-type' not in self.headers:
                mimetype = self.default_mimetype
            if mimetype is not None:
                mimetype = get_content_type(mimetype, self.charset)
            content_type = mimetype
        if content_type is not None:
            self.headers['Content-Type'] = content_type
        if status is None:
            status = self.default_status
        if isinstance(status, integer_types):
            self.status_code = status
        else:
            self.status = status

        self.direct_passthrough = direct_passthrough
        self._on_close = []

        # we set the response after the headers so that if a class changes
        # the charset attribute, the data is set in the correct charset.
        if response is None:
            self.response = []
        elif isinstance(response, (text_type, bytes, bytearray)):
            self.set_data(response)
        else:
            self.response = response

    def call_on_close(self, func):
        """Adds a function to the internal list of functions that should
        be called as part of closing down the response.  Since 0.7 this
        function also returns the function that was passed so that this
        can be used as a decorator.

        .. versionadded:: 0.6
        """
        self._on_close.append(func)
        return func

    def __repr__(self):
        if self.is_sequence:
            body_info = '%d bytes' % sum(map(len, self.iter_encoded()))
        else:
            body_info = self.is_streamed and 'streamed' or 'likely-streamed'
        return '<%s %s [%s]>' % (
            self.__class__.__name__,
            body_info,
            self.status
        )

    @classmethod
    def force_type(cls, response, environ=None):
        """Enforce that the WSGI response is a response object of the current
        type.  Werkzeug will use the :class:`BaseResponse` internally in many
        situations like the exceptions.  If you call :meth:`get_response` on an
        exception you will get back a regular :class:`BaseResponse` object, even
        if you are using a custom subclass.

        This method can enforce a given response type, and it will also
        convert arbitrary WSGI callables into response objects if an environ
        is provided::

            # convert a Werkzeug response object into an instance of the
            # MyResponseClass subclass.
            response = MyResponseClass.force_type(response)

            # convert any WSGI application into a response object
            response = MyResponseClass.force_type(response, environ)

        This is especially useful if you want to post-process responses in
        the main dispatcher and use functionality provided by your subclass.

        Keep in mind that this will modify response objects in place if
        possible!

        :param response: a response object or wsgi application.
        :param environ: a WSGI environment object.
        :return: a response object.
        """
        if not isinstance(response, BaseResponse):
            if environ is None:
                raise TypeError('cannot convert WSGI application into '
                                'response objects without an environ')
            response = BaseResponse(*_run_wsgi_app(response, environ))
        response.__class__ = cls
        return response

    @classmethod
    def from_app(cls, app, environ, buffered=False):
        """Create a new response object from an application output.  This
        works best if you pass it an application that returns a generator all
        the time.  Sometimes applications may use the `write()` callable
        returned by the `start_response` function.  This tries to resolve such
        edge cases automatically.  But if you don't get the expected output
        you should set `buffered` to `True` which enforces buffering.

        :param app: the WSGI application to execute.
        :param environ: the WSGI environment to execute against.
        :param buffered: set to `True` to enforce buffering.
        :return: a response object.
        """
        return cls(*_run_wsgi_app(app, environ, buffered))

    def _get_status_code(self):
        return self._status_code
    def _set_status_code(self, code):
        self._status_code = code
        try:
            self._status = '%d %s' % (code, HTTP_STATUS_CODES[code].upper())
        except KeyError:
            self._status = '%d UNKNOWN' % code
    status_code = property(_get_status_code, _set_status_code,
                           doc='The HTTP Status code as number')
    del _get_status_code, _set_status_code

    def _get_status(self):
        return self._status
    def _set_status(self, value):
        self._status = to_native(value)
        try:
            self._status_code = int(self._status.split(None, 1)[0])
        except ValueError:
            self._status_code = 0
            self._status = '0 %s' % self._status
    status = property(_get_status, _set_status, doc='The HTTP Status code')
    del _get_status, _set_status

    def get_data(self, as_text=False):
        """The string representation of the request body.  Whenever you call
        this property the request iterable is encoded and flattened.  This
        can lead to unwanted behavior if you stream big data.

        This behavior can be disabled by setting
        :attr:`implicit_sequence_conversion` to `False`.

        If `as_text` is set to `True` the return value will be a decoded
        unicode string.

        .. versionadded:: 0.9
        """
        self._ensure_sequence()
        rv = b''.join(self.iter_encoded())
        if as_text:
            rv = rv.decode(self.charset)
        return rv

    def set_data(self, value):
        """Sets a new string as response.  The value set must either by a
        unicode or bytestring.  If a unicode string is set it's encoded
        automatically to the charset of the response (utf-8 by default).

        .. versionadded:: 0.9
        """
        # if an unicode string is set, it's encoded directly so that we
        # can set the content length
        if isinstance(value, text_type):
            value = value.encode(self.charset)
        else:
            value = bytes(value)
        self.response = [value]
        if self.automatically_set_content_length:
            self.headers['Content-Length'] = str(len(value))

    data = property(get_data, set_data, doc='''
        A descriptor that calls :meth:`get_data` and :meth:`set_data`.  This
        should not be used and will eventually get deprecated.
        ''')

    def calculate_content_length(self):
        """Returns the content length if available or `None` otherwise."""
        try:
            self._ensure_sequence()
        except RuntimeError:
            return None
        return sum(len(x) for x in self.response)

    def _ensure_sequence(self, mutable=False):
        """This method can be called by methods that need a sequence.  If
        `mutable` is true, it will also ensure that the response sequence
        is a standard Python list.

        .. versionadded:: 0.6
        """
        if self.is_sequence:
            # if we need a mutable object, we ensure it's a list.
            if mutable and not isinstance(self.response, list):
                self.response = list(self.response)
            return
        if self.direct_passthrough:
            raise RuntimeError('Attempted implicit sequence conversion '
                               'but the response object is in direct '
                               'passthrough mode.')
        if not self.implicit_sequence_conversion:
            raise RuntimeError('The response object required the iterable '
                               'to be a sequence, but the implicit '
                               'conversion was disabled.  Call '
                               'make_sequence() yourself.')
        self.make_sequence()

    def make_sequence(self):
        """Converts the response iterator in a list.  By default this happens
        automatically if required.  If `implicit_sequence_conversion` is
        disabled, this method is not automatically called and some properties
        might raise exceptions.  This also encodes all the items.

        .. versionadded:: 0.6
        """
        if not self.is_sequence:
            # if we consume an iterable we have to ensure that the close
            # method of the iterable is called if available when we tear
            # down the response
            close = getattr(self.response, 'close', None)
            self.response = list(self.iter_encoded())
            if close is not None:
                self.call_on_close(close)

    def iter_encoded(self):
        """Iter the response encoded with the encoding of the response.
        If the response object is invoked as WSGI application the return
        value of this method is used as application iterator unless
        :attr:`direct_passthrough` was activated.
        """
        if __debug__:
            _warn_if_string(self.response)
        # Encode in a separate function so that self.response is fetched
        # early.  This allows us to wrap the response with the return
        # value from get_app_iter or iter_encoded.
        return _iter_encoded(self.response, self.charset)

    def set_cookie(self, key, value='', max_age=None, expires=None,
                   path='/', domain=None, secure=None, httponly=False):
        """Sets a cookie. The parameters are the same as in the cookie `Morsel`
        object in the Python standard library but it accepts unicode data, too.

        :param key: the key (name) of the cookie to be set.
        :param value: the value of the cookie.
        :param max_age: should be a number of seconds, or `None` (default) if
                        the cookie should last only as long as the client's
                        browser session.
        :param expires: should be a `datetime` object or UNIX timestamp.
        :param domain: if you want to set a cross-domain cookie.  For example,
                       ``domain=".example.com"`` will set a cookie that is
                       readable by the domain ``www.example.com``,
                       ``foo.example.com`` etc.  Otherwise, a cookie will only
                       be readable by the domain that set it.
        :param path: limits the cookie to a given path, per default it will
                     span the whole domain.
        """
        self.headers.add('Set-Cookie', dump_cookie(key, value, max_age,
                         expires, path, domain, secure, httponly,
                         self.charset))

    def delete_cookie(self, key, path='/', domain=None):
        """Delete a cookie.  Fails silently if key doesn't exist.

        :param key: the key (name) of the cookie to be deleted.
        :param path: if the cookie that should be deleted was limited to a
                     path, the path has to be defined here.
        :param domain: if the cookie that should be deleted was limited to a
                       domain, that domain has to be defined here.
        """
        self.set_cookie(key, expires=0, max_age=0, path=path, domain=domain)

    @property
    def is_streamed(self):
        """If the response is streamed (the response is not an iterable with
        a length information) this property is `True`.  In this case streamed
        means that there is no information about the number of iterations.
        This is usually `True` if a generator is passed to the response object.

        This is useful for checking before applying some sort of post
        filtering that should not take place for streamed responses.
        """
        try:
            len(self.response)
        except (TypeError, AttributeError):
            return True
        return False

    @property
    def is_sequence(self):
        """If the iterator is buffered, this property will be `True`.  A
        response object will consider an iterator to be buffered if the
        response attribute is a list or tuple.

        .. versionadded:: 0.6
        """
        return isinstance(self.response, (tuple, list))

    def close(self):
        """Close the wrapped response if possible.  You can also use the object
        in a with statement which will automatically close it.

        .. versionadded:: 0.9
           Can now be used in a with statement.
        """
        if hasattr(self.response, 'close'):
            self.response.close()
        for func in self._on_close:
            func()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, tb):
        self.close()

    def freeze(self):
        """Call this method if you want to make your response object ready for
        being pickled.  This buffers the generator if there is one.  It will
        also set the `Content-Length` header to the length of the body.

        .. versionchanged:: 0.6
           The `Content-Length` header is now set.
        """
        # we explicitly set the length to a list of the *encoded* response
        # iterator.  Even if the implicit sequence conversion is disabled.
        self.response = list(self.iter_encoded())
        self.headers['Content-Length'] = str(sum(map(len, self.response)))

    def get_wsgi_headers(self, environ):
        """This is automatically called right before the response is started
        and returns headers modified for the given environment.  It returns a
        copy of the headers from the response with some modifications applied
        if necessary.

        For example the location header (if present) is joined with the root
        URL of the environment.  Also the content length is automatically set
        to zero here for certain status codes.

        .. versionchanged:: 0.6
           Previously that function was called `fix_headers` and modified
           the response object in place.  Also since 0.6, IRIs in location
           and content-location headers are handled properly.

           Also starting with 0.6, Werkzeug will attempt to set the content
           length if it is able to figure it out on its own.  This is the
           case if all the strings in the response iterable are already
           encoded and the iterable is buffered.

        :param environ: the WSGI environment of the request.
        :return: returns a new :class:`~werkzeug.datastructures.Headers`
                 object.
        """
        headers = Headers(self.headers)
        location = None
        content_location = None
        content_length = None
        status = self.status_code

        # iterate over the headers to find all values in one go.  Because
        # get_wsgi_headers is used each response that gives us a tiny
        # speedup.
        for key, value in headers:
            ikey = key.lower()
            if ikey == u'location':
                location = value
            elif ikey == u'content-location':
                content_location = value
            elif ikey == u'content-length':
                content_length = value

        # make sure the location header is an absolute URL
        if location is not None:
            old_location = location
            if isinstance(location, text_type):
                # Safe conversion is necessary here as we might redirect
                # to a broken URI scheme (for instance itms-services).
                location = iri_to_uri(location, safe_conversion=True)

            if self.autocorrect_location_header:
                current_url = get_current_url(environ, root_only=True)
                if isinstance(current_url, text_type):
                    current_url = iri_to_uri(current_url)
                location = url_join(current_url, location)
            if location != old_location:
                headers['Location'] = location

        # make sure the content location is a URL
        if content_location is not None and \
           isinstance(content_location, text_type):
            headers['Content-Location'] = iri_to_uri(content_location)

        # remove entity headers and set content length to zero if needed.
        # Also update content_length accordingly so that the automatic
        # content length detection does not trigger in the following
        # code.
        if 100 <= status < 200 or status == 204:
            headers['Content-Length'] = content_length = u'0'
        elif status == 304:
            remove_entity_headers(headers)

        # if we can determine the content length automatically, we
        # should try to do that.  But only if this does not involve
        # flattening the iterator or encoding of unicode strings in
        # the response.  We however should not do that if we have a 304
        # response.
        if self.automatically_set_content_length and \
           self.is_sequence and content_length is None and status != 304:
            try:
                content_length = sum(len(to_bytes(x, 'ascii'))
                                     for x in self.response)
            except UnicodeError:
                # aha, something non-bytestringy in there, too bad, we
                # can't safely figure out the length of the response.
                pass
            else:
                headers['Content-Length'] = str(content_length)

        return headers

    def get_app_iter(self, environ):
        """Returns the application iterator for the given environ.  Depending
        on the request method and the current status code the return value
        might be an empty response rather than the one from the response.

        If the request method is `HEAD` or the status code is in a range
        where the HTTP specification requires an empty response, an empty
        iterable is returned.

        .. versionadded:: 0.6

        :param environ: the WSGI environment of the request.
        :return: a response iterable.
        """
        status = self.status_code
        if environ['REQUEST_METHOD'] == 'HEAD' or \
           100 <= status < 200 or status in (204, 304):
            iterable = ()
        elif self.direct_passthrough:
            if __debug__:
                _warn_if_string(self.response)
            return self.response
        else:
            iterable = self.iter_encoded()
        return ClosingIterator(iterable, self.close)

    def get_wsgi_response(self, environ):
        """Returns the final WSGI response as tuple.  The first item in
        the tuple is the application iterator, the second the status and
        the third the list of headers.  The response returned is created
        specially for the given environment.  For example if the request
        method in the WSGI environment is ``'HEAD'`` the response will
        be empty and only the headers and status code will be present.

        .. versionadded:: 0.6

        :param environ: the WSGI environment of the request.
        :return: an ``(app_iter, status, headers)`` tuple.
        """
        headers = self.get_wsgi_headers(environ)
        app_iter = self.get_app_iter(environ)
        return app_iter, self.status, headers.to_wsgi_list()

    def __call__(self, environ, start_response):
        """Process this response as WSGI application.

        :param environ: the WSGI environment.
        :param start_response: the response callable provided by the WSGI
                               server.
        :return: an application iterator
        """
        app_iter, status, headers = self.get_wsgi_response(environ)
        start_response(status, headers)
        return app_iter


class AcceptMixin(object):
    """A mixin for classes with an :attr:`~BaseResponse.environ` attribute
    to get all the HTTP accept headers as
    :class:`~werkzeug.datastructures.Accept` objects (or subclasses
    thereof).
    """

    @cached_property
    def accept_mimetypes(self):
        """List of mimetypes this client supports as
        :class:`~werkzeug.datastructures.MIMEAccept` object.
        """
        return parse_accept_header(self.environ.get('HTTP_ACCEPT'), MIMEAccept)

    @cached_property
    def accept_charsets(self):
        """List of charsets this client supports as
        :class:`~werkzeug.datastructures.CharsetAccept` object.
        """
        return parse_accept_header(self.environ.get('HTTP_ACCEPT_CHARSET'),
                                   CharsetAccept)

    @cached_property
    def accept_encodings(self):
        """List of encodings this client accepts.  Encodings in a HTTP term
        are compression encodings such as gzip.  For charsets have a look at
        :attr:`accept_charset`.
        """
        return parse_accept_header(self.environ.get('HTTP_ACCEPT_ENCODING'))

    @cached_property
    def accept_languages(self):
        """List of languages this client accepts as
        :class:`~werkzeug.datastructures.LanguageAccept` object.

        .. versionchanged 0.5
           In previous versions this was a regular
           :class:`~werkzeug.datastructures.Accept` object.
        """
        return parse_accept_header(self.environ.get('HTTP_ACCEPT_LANGUAGE'),
                                   LanguageAccept)


class ETagRequestMixin(object):
    """Add entity tag and cache descriptors to a request object or object with
    a WSGI environment available as :attr:`~BaseRequest.environ`.  This not
    only provides access to etags but also to the cache control header.
    """

    @cached_property
    def cache_control(self):
        """A :class:`~werkzeug.datastructures.RequestCacheControl` object
        for the incoming cache control headers.
        """
        cache_control = self.environ.get('HTTP_CACHE_CONTROL')
        return parse_cache_control_header(cache_control, None,
                                          RequestCacheControl)

    @cached_property
    def if_match(self):
        """An object containing all the etags in the `If-Match` header.

        :rtype: :class:`~werkzeug.datastructures.ETags`
        """
        return parse_etags(self.environ.get('HTTP_IF_MATCH'))

    @cached_property
    def if_none_match(self):
        """An object containing all the etags in the `If-None-Match` header.

        :rtype: :class:`~werkzeug.datastructures.ETags`
        """
        return parse_etags(self.environ.get('HTTP_IF_NONE_MATCH'))

    @cached_property
    def if_modified_since(self):
        """The parsed `If-Modified-Since` header as datetime object."""
        return parse_date(self.environ.get('HTTP_IF_MODIFIED_SINCE'))

    @cached_property
    def if_unmodified_since(self):
        """The parsed `If-Unmodified-Since` header as datetime object."""
        return parse_date(self.environ.get('HTTP_IF_UNMODIFIED_SINCE'))

    @cached_property
    def if_range(self):
        """The parsed `If-Range` header.

        .. versionadded:: 0.7

        :rtype: :class:`~werkzeug.datastructures.IfRange`
        """
        return parse_if_range_header(self.environ.get('HTTP_IF_RANGE'))

    @cached_property
    def range(self):
        """The parsed `Range` header.

        .. versionadded:: 0.7

        :rtype: :class:`~werkzeug.datastructures.Range`
        """
        return parse_range_header(self.environ.get('HTTP_RANGE'))


class UserAgentMixin(object):
    """Adds a `user_agent` attribute to the request object which contains the
    parsed user agent of the browser that triggered the request as a
    :class:`~werkzeug.useragents.UserAgent` object.
    """

    @cached_property
    def user_agent(self):
        """The current user agent."""
        from werkzeug.useragents import UserAgent
        return UserAgent(self.environ)


class AuthorizationMixin(object):
    """Adds an :attr:`authorization` property that represents the parsed
    value of the `Authorization` header as
    :class:`~werkzeug.datastructures.Authorization` object.
    """

    @cached_property
    def authorization(self):
        """The `Authorization` object in parsed form."""
        header = self.environ.get('HTTP_AUTHORIZATION')
        return parse_authorization_header(header)


class StreamOnlyMixin(object):
    """If mixed in before the request object this will change the bahavior
    of it to disable handling of form parsing.  This disables the
    :attr:`files`, :attr:`form` attributes and will just provide a
    :attr:`stream` attribute that however is always available.

    .. versionadded:: 0.9
    """

    disable_data_descriptor = True
    want_form_data_parsed = False


class ETagResponseMixin(object):
    """Adds extra functionality to a response object for etag and cache
    handling.  This mixin requires an object with at least a `headers`
    object that implements a dict like interface similar to
    :class:`~werkzeug.datastructures.Headers`.

    If you want the :meth:`freeze` method to automatically add an etag, you
    have to mixin this method before the response base class.  The default
    response class does not do that.
    """

    @property
    def cache_control(self):
        """The Cache-Control general-header field is used to specify
        directives that MUST be obeyed by all caching mechanisms along the
        request/response chain.
        """
        def on_update(cache_control):
            if not cache_control and 'cache-control' in self.headers:
                del self.headers['cache-control']
            elif cache_control:
                self.headers['Cache-Control'] = cache_control.to_header()
        return parse_cache_control_header(self.headers.get('cache-control'),
                                          on_update,
                                          ResponseCacheControl)

    def make_conditional(self, request_or_environ):
        """Make the response conditional to the request.  This method works
        best if an etag was defined for the response already.  The `add_etag`
        method can be used to do that.  If called without etag just the date
        header is set.

        This does nothing if the request method in the request or environ is
        anything but GET or HEAD.

        It does not remove the body of the response because that's something
        the :meth:`__call__` function does for us automatically.

        Returns self so that you can do ``return resp.make_conditional(req)``
        but modifies the object in-place.

        :param request_or_environ: a request object or WSGI environment to be
                                   used to make the response conditional
                                   against.
        """
        environ = _get_environ(request_or_environ)
        if environ['REQUEST_METHOD'] in ('GET', 'HEAD'):
            # if the date is not in the headers, add it now.  We however
            # will not override an already existing header.  Unfortunately
            # this header will be overriden by many WSGI servers including
            # wsgiref.
            if 'date' not in self.headers:
                self.headers['Date'] = http_date()
            if self.automatically_set_content_length and 'content-length' not in self.headers:
                length = self.calculate_content_length()
                if length is not None:
                    self.headers['Content-Length'] = length
            if not is_resource_modified(environ, self.headers.get('etag'), None,
                                        self.headers.get('last-modified')):
                self.status_code = 304
        return self

    def add_etag(self, overwrite=False, weak=False):
        """Add an etag for the current response if there is none yet."""
        if overwrite or 'etag' not in self.headers:
            self.set_etag(generate_etag(self.get_data()), weak)

    def set_etag(self, etag, weak=False):
        """Set the etag, and override the old one if there was one."""
        self.headers['ETag'] = quote_etag(etag, weak)

    def get_etag(self):
        """Return a tuple in the form ``(etag, is_weak)``.  If there is no
        ETag the return value is ``(None, None)``.
        """
        return unquote_etag(self.headers.get('ETag'))

    def freeze(self, no_etag=False):
        """Call this method if you want to make your response object ready for
        pickeling.  This buffers the generator if there is one.  This also
        sets the etag unless `no_etag` is set to `True`.
        """
        if not no_etag:
            self.add_etag()
        super(ETagResponseMixin, self).freeze()

    accept_ranges = header_property('Accept-Ranges', doc='''
        The `Accept-Ranges` header.  Even though the name would indicate
        that multiple values are supported, it must be one string token only.

        The values ``'bytes'`` and ``'none'`` are common.

        .. versionadded:: 0.7''')

    def _get_content_range(self):
        def on_update(rng):
            if not rng:
                del self.headers['content-range']
            else:
                self.headers['Content-Range'] = rng.to_header()
        rv = parse_content_range_header(self.headers.get('content-range'),
                                        on_update)
        # always provide a content range object to make the descriptor
        # more user friendly.  It provides an unset() method that can be
        # used to remove the header quickly.
        if rv is None:
            rv = ContentRange(None, None, None, on_update=on_update)
        return rv
    def _set_content_range(self, value):
        if not value:
            del self.headers['content-range']
        elif isinstance(value, string_types):
            self.headers['Content-Range'] = value
        else:
            self.headers['Content-Range'] = value.to_header()
    content_range = property(_get_content_range, _set_content_range, doc='''
        The `Content-Range` header as
        :class:`~werkzeug.datastructures.ContentRange` object.  Even if the
        header is not set it wil provide such an object for easier
        manipulation.

        .. versionadded:: 0.7''')
    del _get_content_range, _set_content_range


class ResponseStream(object):
    """A file descriptor like object used by the :class:`ResponseStreamMixin` to
    represent the body of the stream.  It directly pushes into the response
    iterable of the response object.
    """

    mode = 'wb+'

    def __init__(self, response):
        self.response = response
        self.closed = False

    def write(self, value):
        if self.closed:
            raise ValueError('I/O operation on closed file')
        self.response._ensure_sequence(mutable=True)
        self.response.response.append(value)
        self.response.headers.pop('Content-Length', None)

    def writelines(self, seq):
        for item in seq:
            self.write(item)

    def close(self):
        self.closed = True

    def flush(self):
        if self.closed:
            raise ValueError('I/O operation on closed file')

    def isatty(self):
        if self.closed:
            raise ValueError('I/O operation on closed file')
        return False

    @property
    def encoding(self):
        return self.response.charset


class ResponseStreamMixin(object):
    """Mixin for :class:`BaseRequest` subclasses.  Classes that inherit from
    this mixin will automatically get a :attr:`stream` property that provides
    a write-only interface to the response iterable.
    """

    @cached_property
    def stream(self):
        """The response iterable as write-only stream."""
        return ResponseStream(self)


class CommonRequestDescriptorsMixin(object):
    """A mixin for :class:`BaseRequest` subclasses.  Request objects that
    mix this class in will automatically get descriptors for a couple of
    HTTP headers with automatic type conversion.

    .. versionadded:: 0.5
    """

    content_type = environ_property('CONTENT_TYPE', doc='''
        The Content-Type entity-header field indicates the media type of
        the entity-body sent to the recipient or, in the case of the HEAD
        method, the media type that would have been sent had the request
        been a GET.''')

    @cached_property
    def content_length(self):
        """The Content-Length entity-header field indicates the size of the
        entity-body in bytes or, in the case of the HEAD method, the size of
        the entity-body that would have been sent had the request been a
        GET.
        """
        return get_content_length(self.environ)

    content_encoding = environ_property('HTTP_CONTENT_ENCODING', doc='''
        The Content-Encoding entity-header field is used as a modifier to the
        media-type.  When present, its value indicates what additional content
        codings have been applied to the entity-body, and thus what decoding
        mechanisms must be applied in order to obtain the media-type
        referenced by the Content-Type header field.

        .. versionadded:: 0.9''')
    content_md5 = environ_property('HTTP_CONTENT_MD5', doc='''
         The Content-MD5 entity-header field, as defined in RFC 1864, is an
         MD5 digest of the entity-body for the purpose of providing an
         end-to-end message integrity check (MIC) of the entity-body.  (Note:
         a MIC is good for detecting accidental modification of the
         entity-body in transit, but is not proof against malicious attacks.)

        .. versionadded:: 0.9''')
    referrer = environ_property('HTTP_REFERER', doc='''
        The Referer[sic] request-header field allows the client to specify,
        for the server's benefit, the address (URI) of the resource from which
        the Request-URI was obtained (the "referrer", although the header
        field is misspelled).''')
    date = environ_property('HTTP_DATE', None, parse_date, doc='''
        The Date general-header field represents the date and time at which
        the message was originated, having the same semantics as orig-date
        in RFC 822.''')
    max_forwards = environ_property('HTTP_MAX_FORWARDS', None, int, doc='''
         The Max-Forwards request-header field provides a mechanism with the
         TRACE and OPTIONS methods to limit the number of proxies or gateways
         that can forward the request to the next inbound server.''')

    def _parse_content_type(self):
        if not hasattr(self, '_parsed_content_type'):
            self._parsed_content_type = \
                parse_options_header(self.environ.get('CONTENT_TYPE', ''))

    @property
    def mimetype(self):
        """Like :attr:`content_type` but without parameters (eg, without
        charset, type etc.).  For example if the content
        type is ``text/html; charset=utf-8`` the mimetype would be
        ``'text/html'``.
        """
        self._parse_content_type()
        return self._parsed_content_type[0]

    @property
    def mimetype_params(self):
        """The mimetype parameters as dict.  For example if the content
        type is ``text/html; charset=utf-8`` the params would be
        ``{'charset': 'utf-8'}``.
        """
        self._parse_content_type()
        return self._parsed_content_type[1]

    @cached_property
    def pragma(self):
        """The Pragma general-header field is used to include
        implementation-specific directives that might apply to any recipient
        along the request/response chain.  All pragma directives specify
        optional behavior from the viewpoint of the protocol; however, some
        systems MAY require that behavior be consistent with the directives.
        """
        return parse_set_header(self.environ.get('HTTP_PRAGMA', ''))


class CommonResponseDescriptorsMixin(object):
    """A mixin for :class:`BaseResponse` subclasses.  Response objects that
    mix this class in will automatically get descriptors for a couple of
    HTTP headers with automatic type conversion.
    """

    def _get_mimetype(self):
        ct = self.headers.get('content-type')
        if ct:
            return ct.split(';')[0].strip()

    def _set_mimetype(self, value):
        self.headers['Content-Type'] = get_content_type(value, self.charset)

    def _get_mimetype_params(self):
        def on_update(d):
            self.headers['Content-Type'] = \
                dump_options_header(self.mimetype, d)
        d = parse_options_header(self.headers.get('content-type', ''))[1]
        return CallbackDict(d, on_update)

    mimetype = property(_get_mimetype, _set_mimetype, doc='''
        The mimetype (content type without charset etc.)''')
    mimetype_params = property(_get_mimetype_params, doc='''
        The mimetype parameters as dict.  For example if the content
        type is ``text/html; charset=utf-8`` the params would be
        ``{'charset': 'utf-8'}``.

        .. versionadded:: 0.5
        ''')
    location = header_property('Location', doc='''
        The Location response-header field is used to redirect the recipient
        to a location other than the Request-URI for completion of the request
        or identification of a new resource.''')
    age = header_property('Age', None, parse_date, http_date, doc='''
        The Age response-header field conveys the sender's estimate of the
        amount of time since the response (or its revalidation) was
        generated at the origin server.

        Age values are non-negative decimal integers, representing time in
        seconds.''')
    content_type = header_property('Content-Type', doc='''
        The Content-Type entity-header field indicates the media type of the
        entity-body sent to the recipient or, in the case of the HEAD method,
        the media type that would have been sent had the request been a GET.
    ''')
    content_length = header_property('Content-Length', None, int, str, doc='''
        The Content-Length entity-header field indicates the size of the
        entity-body, in decimal number of OCTETs, sent to the recipient or,
        in the case of the HEAD method, the size of the entity-body that would
        have been sent had the request been a GET.''')
    content_location = header_property('Content-Location', doc='''
        The Content-Location entity-header field MAY be used to supply the
        resource location for the entity enclosed in the message when that
        entity is accessible from a location separate from the requested
        resource's URI.''')
    content_encoding = header_property('Content-Encoding', doc='''
        The Content-Encoding entity-header field is used as a modifier to the
        media-type.  When present, its value indicates what additional content
        codings have been applied to the entity-body, and thus what decoding
        mechanisms must be applied in order to obtain the media-type
        referenced by the Content-Type header field.''')
    content_md5 = header_property('Content-MD5', doc='''
         The Content-MD5 entity-header field, as defined in RFC 1864, is an
         MD5 digest of the entity-body for the purpose of providing an
         end-to-end message integrity check (MIC) of the entity-body.  (Note:
         a MIC is good for detecting accidental modification of the
         entity-body in transit, but is not proof against malicious attacks.)
        ''')
    date = header_property('Date', None, parse_date, http_date, doc='''
        The Date general-header field represents the date and time at which
        the message was originated, having the same semantics as orig-date
        in RFC 822.''')
    expires = header_property('Expires', None, parse_date, http_date, doc='''
        The Expires entity-header field gives the date/time after which the
        response is considered stale. A stale cache entry may not normally be
        returned by a cache.''')
    last_modified = header_property('Last-Modified', None, parse_date,
                                    http_date, doc='''
        The Last-Modified entity-header field indicates the date and time at
        which the origin server believes the variant was last modified.''')

    def _get_retry_after(self):
        value = self.headers.get('retry-after')
        if value is None:
            return
        elif value.isdigit():
            return datetime.utcnow() + timedelta(seconds=int(value))
        return parse_date(value)
    def _set_retry_after(self, value):
        if value is None:
            if 'retry-after' in self.headers:
                del self.headers['retry-after']
            return
        elif isinstance(value, datetime):
            value = http_date(value)
        else:
            value = str(value)
        self.headers['Retry-After'] = value

    retry_after = property(_get_retry_after, _set_retry_after, doc='''
        The Retry-After response-header field can be used with a 503 (Service
        Unavailable) response to indicate how long the service is expected
        to be unavailable to the requesting client.

        Time in seconds until expiration or date.''')

    def _set_property(name, doc=None):
        def fget(self):
            def on_update(header_set):
                if not header_set and name in self.headers:
                    del self.headers[name]
                elif header_set:
                    self.headers[name] = header_set.to_header()
            return parse_set_header(self.headers.get(name), on_update)
        def fset(self, value):
            if not value:
                del self.headers[name]
            elif isinstance(value, string_types):
                self.headers[name] = value
            else:
                self.headers[name] = dump_header(value)
        return property(fget, fset, doc=doc)

    vary = _set_property('Vary', doc='''
         The Vary field value indicates the set of request-header fields that
         fully determines, while the response is fresh, whether a cache is
         permitted to use the response to reply to a subsequent request
         without revalidation.''')
    content_language = _set_property('Content-Language', doc='''
         The Content-Language entity-header field describes the natural
         language(s) of the intended audience for the enclosed entity.  Note
         that this might not be equivalent to all the languages used within
         the entity-body.''')
    allow = _set_property('Allow', doc='''
        The Allow entity-header field lists the set of methods supported
        by the resource identified by the Request-URI. The purpose of this
        field is strictly to inform the recipient of valid methods
        associated with the resource. An Allow header field MUST be
        present in a 405 (Method Not Allowed) response.''')

    del _set_property, _get_mimetype, _set_mimetype, _get_retry_after, \
        _set_retry_after


class WWWAuthenticateMixin(object):
    """Adds a :attr:`www_authenticate` property to a response object."""

    @property
    def www_authenticate(self):
        """The `WWW-Authenticate` header in a parsed form."""
        def on_update(www_auth):
            if not www_auth and 'www-authenticate' in self.headers:
                del self.headers['www-authenticate']
            elif www_auth:
                self.headers['WWW-Authenticate'] = www_auth.to_header()
        header = self.headers.get('www-authenticate')
        return parse_www_authenticate_header(header, on_update)


class Request(BaseRequest, AcceptMixin, ETagRequestMixin,
              UserAgentMixin, AuthorizationMixin,
              CommonRequestDescriptorsMixin):
    """Full featured request object implementing the following mixins:

    - :class:`AcceptMixin` for accept header parsing
    - :class:`ETagRequestMixin` for etag and cache control handling
    - :class:`UserAgentMixin` for user agent introspection
    - :class:`AuthorizationMixin` for http auth handling
    - :class:`CommonRequestDescriptorsMixin` for common headers
    """


class PlainRequest(StreamOnlyMixin, Request):
    """A request object without special form parsing capabilities.

    .. versionadded:: 0.9
    """


class Response(BaseResponse, ETagResponseMixin, ResponseStreamMixin,
               CommonResponseDescriptorsMixin,
               WWWAuthenticateMixin):
    """Full featured response object implementing the following mixins:

    - :class:`ETagResponseMixin` for etag and cache control handling
    - :class:`ResponseStreamMixin` to add support for the `stream` property
    - :class:`CommonResponseDescriptorsMixin` for various HTTP descriptors
    - :class:`WWWAuthenticateMixin` for HTTP authentication support
    """





          

      

      

    


    
        © Copyright 2014, Te-jé Rodgers.
      Created using Sphinx 1.3.1.
    

  

_images/postman.png
Q_ Filter

History Collections localhost:3000/tasks/ X No environment v 6

[0

sost localhost:3000/tasks/
i Headers (1) Body Pre-request script @
Post localhost:5000 asks/

e localhost:5000/tasks/ © formdata O xwwwformrlencoded  ® raw O binary  JSON (zpplicationson] v

GeT localhost:5000/tasks

‘title": “Update Messenger”,
T localhost:5000/ Gue': "2015-67-19 69:00:00:8408"

Body Cookics Headers(s) Tests  Status 201CREATED Time 443ms

Content-Length— &
Content-Type — application/json
Date — St 18.u1201503:4001 GMT
Location — http:/localhost:5000/tasks/ 1

Server— Werkzeug/0.10.4 Python/3.42

+ Scrolltoresponse






_modules/werkzeug/local.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Findig 0.1.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for werkzeug.local

# -*- coding: utf-8 -*-
"""
    werkzeug.local
    ~~~~~~~~~~~~~~

 This module implements context-local objects.

 :copyright: (c) 2014 by the Werkzeug Team, see AUTHORS for more details.
 :license: BSD, see LICENSE for more details.
"""
from functools import update_wrapper
from werkzeug.wsgi import ClosingIterator
from werkzeug._compat import PY2, implements_bool

since each thread has its own greenlet we can just use those as identifiers
for the context. If greenlets are not available we fall back to the
current thread ident depending on where it is.
try:
 from greenlet import getcurrent as get_ident
except ImportError:
 try:
 from thread import get_ident
 except ImportError:
 from _thread import get_ident

def release_local(local):
 """Releases the contents of the local for the current context.
 This makes it possible to use locals without a manager.

 Example::

 >>> loc = Local()
 >>> loc.foo = 42
 >>> release_local(loc)
 >>> hasattr(loc, 'foo')
 False

 With this function one can release :class:`Local` objects as well
 as :class:`LocalStack` objects. However it is not possible to
 release data held by proxies that way, one always has to retain
 a reference to the underlying local object in order to be able
 to release it.

 .. versionadded:: 0.6.1
 """
 local.__release_local__()

class Local(object):
 __slots__ = ('__storage__', '__ident_func__')

 def __init__(self):
 object.__setattr__(self, '__storage__', {})
 object.__setattr__(self, '__ident_func__', get_ident)

 def __iter__(self):
 return iter(self.__storage__.items())

 def __call__(self, proxy):
 """Create a proxy for a name."""
 return LocalProxy(self, proxy)

 def __release_local__(self):
 self.__storage__.pop(self.__ident_func__(), None)

 def __getattr__(self, name):
 try:
 return self.__storage__[self.__ident_func__()][name]
 except KeyError:
 raise AttributeError(name)

 def __setattr__(self, name, value):
 ident = self.__ident_func__()
 storage = self.__storage__
 try:
 storage[ident][name] = value
 except KeyError:
 storage[ident] = {name: value}

 def __delattr__(self, name):
 try:
 del self.__storage__[self.__ident_func__()][name]
 except KeyError:
 raise AttributeError(name)

class LocalStack(object):
 """This class works similar to a :class:`Local` but keeps a stack
 of objects instead. This is best explained with an example::

 >>> ls = LocalStack()
 >>> ls.push(42)
 >>> ls.top
 42
 >>> ls.push(23)
 >>> ls.top
 23
 >>> ls.pop()
 23
 >>> ls.top
 42

 They can be force released by using a :class:`LocalManager` or with
 the :func:`release_local` function but the correct way is to pop the
 item from the stack after using. When the stack is empty it will
 no longer be bound to the current context (and as such released).

 By calling the stack without arguments it returns a proxy that resolves to
 the topmost item on the stack.

 .. versionadded:: 0.6.1
 """

 def __init__(self):
 self._local = Local()

 def __release_local__(self):
 self._local.__release_local__()

 def _get__ident_func__(self):
 return self._local.__ident_func__
 def _set__ident_func__(self, value):
 object.__setattr__(self._local, '__ident_func__', value)
 __ident_func__ = property(_get__ident_func__, _set__ident_func__)
 del _get__ident_func__, _set__ident_func__

 def __call__(self):
 def _lookup():
 rv = self.top
 if rv is None:
 raise RuntimeError('object unbound')
 return rv
 return LocalProxy(_lookup)

 def push(self, obj):
 """Pushes a new item to the stack"""
 rv = getattr(self._local, 'stack', None)
 if rv is None:
 self._local.stack = rv = []
 rv.append(obj)
 return rv

 def pop(self):
 """Removes the topmost item from the stack, will return the
 old value or `None` if the stack was already empty.
 """
 stack = getattr(self._local, 'stack', None)
 if stack is None:
 return None
 elif len(stack) == 1:
 release_local(self._local)
 return stack[-1]
 else:
 return stack.pop()

 @property
 def top(self):
 """The topmost item on the stack. If the stack is empty,
 `None` is returned.
 """
 try:
 return self._local.stack[-1]
 except (AttributeError, IndexError):
 return None

class LocalManager(object):
 """Local objects cannot manage themselves. For that you need a local
 manager. You can pass a local manager multiple locals or add them later
 by appending them to `manager.locals`. Everytime the manager cleans up
 it, will clean up all the data left in the locals for this context.

 The `ident_func` parameter can be added to override the default ident
 function for the wrapped locals.

 .. versionchanged:: 0.6.1
 Instead of a manager the :func:`release_local` function can be used
 as well.

 .. versionchanged:: 0.7
 `ident_func` was added.
 """

 def __init__(self, locals=None, ident_func=None):
 if locals is None:
 self.locals = []
 elif isinstance(locals, Local):
 self.locals = [locals]
 else:
 self.locals = list(locals)
 if ident_func is not None:
 self.ident_func = ident_func
 for local in self.locals:
 object.__setattr__(local, '__ident_func__', ident_func)
 else:
 self.ident_func = get_ident

 def get_ident(self):
 """Return the context identifier the local objects use internally for
 this context. You cannot override this method to change the behavior
 but use it to link other context local objects (such as SQLAlchemy's
 scoped sessions) to the Werkzeug locals.

 .. versionchanged:: 0.7
 You can pass a different ident function to the local manager that
 will then be propagated to all the locals passed to the
 constructor.
 """
 return self.ident_func()

 def cleanup(self):
 """Manually clean up the data in the locals for this context. Call
 this at the end of the request or use `make_middleware()`.
 """
 for local in self.locals:
 release_local(local)

 def make_middleware(self, app):
 """Wrap a WSGI application so that cleaning up happens after
 request end.
 """
 def application(environ, start_response):
 return ClosingIterator(app(environ, start_response), self.cleanup)
 return application

 def middleware(self, func):
 """Like `make_middleware` but for decorating functions.

 Example usage::

 @manager.middleware
 def application(environ, start_response):
 ...

 The difference to `make_middleware` is that the function passed
 will have all the arguments copied from the inner application
 (name, docstring, module).
 """
 return update_wrapper(self.make_middleware(func), func)

 def __repr__(self):
 return '<%s storages: %d>' % (
 self.__class__.__name__,
 len(self.locals)
)

@implements_bool
class LocalProxy(object):
 """Acts as a proxy for a werkzeug local. Forwards all operations to
 a proxied object. The only operations not supported for forwarding
 are right handed operands and any kind of assignment.

 Example usage::

 from werkzeug.local import Local
 l = Local()

 # these are proxies
 request = l('request')
 user = l('user')

 from werkzeug.local import LocalStack
 _response_local = LocalStack()

 # this is a proxy
 response = _response_local()

 Whenever something is bound to l.user / l.request the proxy objects
 will forward all operations. If no object is bound a :exc:`RuntimeError`
 will be raised.

 To create proxies to :class:`Local` or :class:`LocalStack` objects,
 call the object as shown above. If you want to have a proxy to an
 object looked up by a function, you can (as of Werkzeug 0.6.1) pass
 a function to the :class:`LocalProxy` constructor::

 session = LocalProxy(lambda: get_current_request().session)

 .. versionchanged:: 0.6.1
 The class can be instanciated with a callable as well now.
 """
 __slots__ = ('__local', '__dict__', '__name__')

 def __init__(self, local, name=None):
 object.__setattr__(self, '_LocalProxy__local', local)
 object.__setattr__(self, '__name__', name)

 def _get_current_object(self):
 """Return the current object. This is useful if you want the real
 object behind the proxy at a time for performance reasons or because
 you want to pass the object into a different context.
 """
 if not hasattr(self.__local, '__release_local__'):
 return self.__local()
 try:
 return getattr(self.__local, self.__name__)
 except AttributeError:
 raise RuntimeError('no object bound to %s' % self.__name__)

 @property
 def __dict__(self):
 try:
 return self._get_current_object().__dict__
 except RuntimeError:
 raise AttributeError('__dict__')

 def __repr__(self):
 try:
 obj = self._get_current_object()
 except RuntimeError:
 return '<%s unbound>' % self.__class__.__name__
 return repr(obj)

 def __bool__(self):
 try:
 return bool(self._get_current_object())
 except RuntimeError:
 return False

 def __unicode__(self):
 try:
 return unicode(self._get_current_object())
 except RuntimeError:
 return repr(self)

 def __dir__(self):
 try:
 return dir(self._get_current_object())
 except RuntimeError:
 return []

 def __getattr__(self, name):
 if name == '__members__':
 return dir(self._get_current_object())
 return getattr(self._get_current_object(), name)

 def __setitem__(self, key, value):
 self._get_current_object()[key] = value

 def __delitem__(self, key):
 del self._get_current_object()[key]

 if PY2:
 __getslice__ = lambda x, i, j: x._get_current_object()[i:j]

 def __setslice__(self, i, j, seq):
 self._get_current_object()[i:j] = seq

 def __delslice__(self, i, j):
 del self._get_current_object()[i:j]

 __setattr__ = lambda x, n, v: setattr(x._get_current_object(), n, v)
 __delattr__ = lambda x, n: delattr(x._get_current_object(), n)
 __str__ = lambda x: str(x._get_current_object())
 __lt__ = lambda x, o: x._get_current_object() < o
 __le__ = lambda x, o: x._get_current_object() <= o
 __eq__ = lambda x, o: x._get_current_object() == o
 __ne__ = lambda x, o: x._get_current_object() != o
 __gt__ = lambda x, o: x._get_current_object() > o
 __ge__ = lambda x, o: x._get_current_object() >= o
 __cmp__ = lambda x, o: cmp(x._get_current_object(), o)
 __hash__ = lambda x: hash(x._get_current_object())
 __call__ = lambda x, *a, **kw: x._get_current_object()(*a, **kw)
 __len__ = lambda x: len(x._get_current_object())
 __getitem__ = lambda x, i: x._get_current_object()[i]
 __iter__ = lambda x: iter(x._get_current_object())
 __contains__ = lambda x, i: i in x._get_current_object()
 __add__ = lambda x, o: x._get_current_object() + o
 __sub__ = lambda x, o: x._get_current_object() - o
 __mul__ = lambda x, o: x._get_current_object() * o
 __floordiv__ = lambda x, o: x._get_current_object() // o
 __mod__ = lambda x, o: x._get_current_object() % o
 __divmod__ = lambda x, o: x._get_current_object().__divmod__(o)
 __pow__ = lambda x, o: x._get_current_object() ** o
 __lshift__ = lambda x, o: x._get_current_object() << o
 __rshift__ = lambda x, o: x._get_current_object() >> o
 __and__ = lambda x, o: x._get_current_object() & o
 __xor__ = lambda x, o: x._get_current_object() ^ o
 __or__ = lambda x, o: x._get_current_object() | o
 __div__ = lambda x, o: x._get_current_object().__div__(o)
 __truediv__ = lambda x, o: x._get_current_object().__truediv__(o)
 __neg__ = lambda x: -(x._get_current_object())
 __pos__ = lambda x: +(x._get_current_object())
 __abs__ = lambda x: abs(x._get_current_object())
 __invert__ = lambda x: ~(x._get_current_object())
 __complex__ = lambda x: complex(x._get_current_object())
 __int__ = lambda x: int(x._get_current_object())
 __long__ = lambda x: long(x._get_current_object())
 __float__ = lambda x: float(x._get_current_object())
 __oct__ = lambda x: oct(x._get_current_object())
 __hex__ = lambda x: hex(x._get_current_object())
 __index__ = lambda x: x._get_current_object().__index__()
 __coerce__ = lambda x, o: x._get_current_object().__coerce__(x, o)
 __enter__ = lambda x: x._get_current_object().__enter__()
 __exit__ = lambda x, *a, **kw: x._get_current_object().__exit__(*a, **kw)
 __radd__ = lambda x, o: o + x._get_current_object()
 __rsub__ = lambda x, o: o - x._get_current_object()
 __rmul__ = lambda x, o: o * x._get_current_object()
 __rdiv__ = lambda x, o: o / x._get_current_object()
 if PY2:
 __rtruediv__ = lambda x, o: x._get_current_object().__rtruediv__(o)
 else:
 __rtruediv__ = __rdiv__
 __rfloordiv__ = lambda x, o: o // x._get_current_object()
 __rmod__ = lambda x, o: o % x._get_current_object()
 __rdivmod__ = lambda x, o: x._get_current_object().__rdivmod__(o)

 © Copyright 2014, Te-jé Rodgers.
 Created using Sphinx 1.3.1.

_static/postman.png
Q_ Filter

History Collections localhost:3000/tasks/ X No environment v 6

[0

sost localhost:3000/tasks/
i Headers (1) Body Pre-request script @
Post localhost:5000 asks/

e localhost:5000/tasks/ © formdata O xwwwformrlencoded ® raw O binary JSON (zpplicationson] v

GeT localhost:5000/tasks

‘title": “Update Messenger”,
T localhost:5000/ Gue': "2015-67-19 69:00:00:8408"

Body Cookics Headers(s) Tests Status 201CREATED Time 443ms

Content-Length— &
Content-Type — application/json
Date — St 18.u1201503:4001 GMT
Location — http:/localhost:5000/tasks/ 1

Server— Werkzeug/0.10.4 Python/3.42

+ Scrolltoresponse

_static/ajax-loader.gif

_static/comment-close.png

_static/down.png

_static/comment-bright.png

