
Findig Documentation
Release 0.1.0

Te-je Rodgers

July 18, 2015

Contents

1 User Guide 3
1.1 Introduction . 3
1.2 Installation . 4
1.3 Quickstart . 5
1.4 taskman — A tutorial . 10

2 API Documentation 21
2.1 Findig core modules . 21
2.2 Higher-level tools . 31
2.3 Added features enabled by third-party libraries . 45
2.4 General Utilities . 46

Python Module Index 47

i

ii

Findig Documentation, Release 0.1.0

Findig is a micro-framework for developing HTTP applications in Python. It is built on Werkzeug and is intended as
an alternative to Flask when developing RESTful APIs.

The documentation is split into two parts: the user guide (which includes installation and quickstart instructions) and
detailed API documentation.

Note: The documentation here isn’t complete yet. If you stumble across something that you think should be docu-
mented, but isn’t, please feel free to let us know about it on our issue tracker.

You may also clone the Github Repository and submit pull requests with documentation fixes for review.

Findig uses Werkzeug internally, and so some understanding of how Werkzeug works and its data types, while not
necessary, will almost certainly be helpful:

• Werkzeug documentation.

Contents 1

http://werkzeug.pocoo.org
http://flask.pocoo.org
https://github.com/geniphi/findig/issues/new
https://github.com/geniphi/findig
http://werkzeug.pocoo.org/docs

Findig Documentation, Release 0.1.0

2 Contents

CHAPTER 1

User Guide

This part of the documentation is a comprehensive guide for getting things done with Findig, as well as some notes on
its design.

1.1 Introduction

This section gives a brief introduction to what Findig is, its design philosophy, and what to expect when using it.

1.1.1 What Findig is

Findig is a micro-framework for building HTTP applications. It’s perhaps comparable to Flask and Bottle in terms of
size and ease of use. Continuing in their tradition, it makes it incredibly easy to set up a WSGI application, and avoids
forcing specific choices on you (such as a database layer or templating engine). However, Findig is geared specifically
toward building RESTful web applications, so much so that serving HTML for web browsers with Findig would be
incredibly counter-intuitive.

Where traditional frameworks typically describe web applications in terms of views (or pages) and routes, Findig
applications are described in terms of resources and CRUD actions, and the actual generation of views is done behind
the scenes. Here’s an example of what an application that serves a simple JSON API looks like in Findig:

from findig.json import App
from dbstack.users import get, save, delete

app = JSONApp()

@app.route("/users/<int:id>")
def user(id):

user = get(id)
return user.as_dict()

@user.model("write")
def user(data, id):

save(id, data)
return get(id).as_dict()

@user.model("delete")
def user(id):

delete(id)

3

http://flask.pocoo.org/
http://bottlepy.org/

Findig Documentation, Release 0.1.0

app is a WSGI callable that can be run by your
WSGI server of choice

This code will accept and respond to application/json GET|PUT|DELETE requests sent to /users/:id on the
server, as long as id looks like an integer. Notice how rather than describing the resource in terms of how it looks
(i.e., a view), the resource is described in terms of how to read, write and delete its data. It’s implied that Findig will
use this data to organize the views and construct the responses. Behind the scenes the findig.json.App converts
the resource data into a JSON formatted response.

1.1.2 A word on customization

As seen above, Findig lets you describe how to manipulate resource data and then runs along and does everything else
to handle requests (including parsing input and formatting output). If that sounds a little heavy on the fascism, don’t
despair; it’s actually really customizable.

Input parsing, output formatting and error handling can be globally or selectively overridden in all Findig applications.
For example, if we wanted to also output to XML based on an accept header, we could add the following code:

@user.formatter.register("application/xml")
def format_xml_response(user_dict):

This registers an xml formatter for the user resource
xml = generate_user_xml_by_some_means(user_dict)
return xml

In addition, a lot of Findig’s internals are based on abstract classes, allowing you to plug in custom components that
do things just the way you want them done (let’s hope it never comes to that, though).

1.1.3 When to use (and not to use) Findig

Note: Findig is plain and simple pre-release software. This section right now is largely irrelevant for production
applications: you simply don’t.

Findig is an API framework that’s intended for building APIs, and it aims to be great at doing only that. As a result,
support for applications that talk to traditional web browsers is virtually non-existent. Instead, use Findig if you want
to build a backend API that powers your web apps and/or mobile applications.

Note: Findig can be used to back angularjs apps.

1.2 Installation

Note: Findig is pre-release software and isn’t currently installable by PyPI. Currently the only way to install Findig
is using its development version.

Installing Findig is easy, as long as you have the right tool for the job. Make sure you have pip installed before
proceeding.

1.2.1 Supported Python versions

Findig currently supports Python 3.4.

4 Chapter 1. User Guide

http://https://angularjs.org/
http://pip.readthedocs.org/en/latest/installing.html

Findig Documentation, Release 0.1.0

1.2.2 Installing the development version

You can install the development version of Findig straight from Github. Just run the following pip command (make
sure you have git installed on your system):

$ pip install git+https://github.com/geniphi/findig.git#egg=Findig

This will install the latest version of Findig on your system.

1.2.3 Getting extra features

Findig has some extra features that are enabled when certain packages are installed on the system. They are defined
as extras that can be specified when installing Findig. To install an extra feature, just include its name inside square
brackets immediately after ‘Findig’ in your pip install command. Multiple extra features can be installed by listing
them inside square brackets, separated by commas. For example, to install the development version of Findig with
redis cache support, run this command:

$ pip install git+https://github.com/geniphi/findig.git#egg=Findig[redis]

And pip will install Findig along with all the requirements necessary for the extra feature to work.

Here’s a list of all the supported extra features:

Feature name Description Installed Requirements
redis Redis data set support redis

1.2.4 Getting the source code

The source code for Findig is hosted on Github. If you have Git installed, you can clone the repository straight to your
hard drive from a command shell:

$ git clone git://github.com/geniphi/findig.git

Alternatively, you can download a source tarball or zipball, both of which will contain the latest source code from the
repository.

1.3 Quickstart

Ready to get started? This section gives you a quick introduction to using Findig and it’s basic patterns.

1.3.1 The tiniest JSON application

Here’s the smallest app you can write in Findig:

from findig.json import App
from werkzeug.serving import run_simple

app = App(indent=4, autolist=True)

if __name__ == '__main__':
run_simple('localhost', 5000, app)

1.3. Quickstart 5

https://github.com/geniphi/findig
https://github.com/geniphi/findig
https://github.com/geniphi/findig/tarball/master
https://github.com/geniphi/findig/zipball/master

Findig Documentation, Release 0.1.0

This barebones app exposes a list of resources that are exposed by your app, and the HTTP methods that they support.
Save it as listr.py, and run as follows:

$ python listr.py

* Running on http://localhost:5000/ (Press CTRL+C to quit)

Now, send a GET request to the root of your app:

$ curl http://localhost:5000/
[

{
"methods": [

"HEAD",
"GET"

],
"url": "/",
"is_strict_collection": false

}
]

We see that the response is a singleton list with an autogenerated JSON resource. That single item is the same one
we just queried, and it was added by the autolist=True argument to our application. That tells the application to
create a resource at the server root that lists all of the resources available on the API. Since we haven’t added any other
resources, this is the only one available.

1.3.2 Adding resources

To add a resource, tell the app how to get the resource’s data, and what URLs route to it:

@app.route("/resource")
def resource():

return { "msg": "Hello World!" }

What we’ve defined here is a pretty useless static resource, but it’s okay because it’s just for illustrative purposes.
Typically, each resource is defined in terms of a function that gets the data associated with it, here we’ve aptly called
ours resource. The app.route() decorator factory takes a URL rule specification and registers our resource at
any URL that matches.

Hint: So what type should your resource function return? Well, Findig doesn’t actually have any specific restrictions.
If you’re working with a JSON app though, you should probably stick to Python mappings and iterables.

Other types can by used seamlessly with custom formatters.

The code above is actually shorthand for the following:

@app.route("/resource")
@app.resource
def resource():

return { "msg": "Hello World!" }

app.resource takes a resource function and turns it into a Resource, which can still be called as though they
are resource functions.

You can use arguments to customize resource creation:

@app.route("/resource")
@app.resource(name="my-super-special-resource")

6 Chapter 1. User Guide

Findig Documentation, Release 0.1.0

def resource():
return {"msg": "Hello, from {}".format(resource.name)}

Resource names are unique strings that identify the resource somehow. By default, Findig will try to generate one for
you, but that can be overridden if you want your resources to follow a particular naming scheme (or if you want to
treat two resources as the same, by giving them the same name).

See finding.resource.Resource for a full listing of arguments that you can pass to resources.

Note: While you can omit @app.resource if your resource doesn’t need any arguments, you shouldn’t ever omit
@app.route unless you really intend to have a resource that can never be reached by the outside world!

1.3.3 Collections

Some resources can be designated as collections of other resources. Resource instances have a special decorator to
help you set this up:

@app.route("/people/<int:idx>")
def person(idx):

return people()[idx-1]

@app.route("/people/")
@person.collection
def people():

return [
{"name": "John Doe", "age": 40},
{"name": "Jane Smith", "age": 34}

]

What’s going on here? Well, we’ve defined a person resource that routes to a strange looking URL. Actually,
/people/<int:idx> is a URL rule specification; any URL that matches it will route to this resource. The angle
brackets indicate a variable part of the URL. It includes an optional converter, and the name of the variable part. This
spec will match the URLs /people/0, /people/1, people/2 etc, but not /people/anthony (because we
specfied an int converter; to match ordinary strings, just omit the converter: people/<idx>). A URL spec can have
as many variable parts as needed, however the resource function must take a named parameter matching each of the
variable parts.

Next, we define a people resource that’s a collection of person using person.collection as a decorator. The
resource functions for collections are expected to return iterables that contain representations of the contained items.

Like resources, collections can take arguments too:

@app.route("/people/")
@person.collection(include_urls=True)
def people():

return [
{"name": "John Doe", "age": 40, "idx": 1},
{"name": "Jane Smith", "age": 34, "idx": 2}

]

The include_urls=True instructs the collection to insert a URL field in the generated items that points to that
specific item on the API server. The only caveat is that the item data that we return from the collection’s resource
function has to have enough information contained to build a URL for the item (that’s why we added the idx field
here).

See finding.resource.Collection for a full listing of arguments that you can pass to collections.

1.3. Quickstart 7

Findig Documentation, Release 0.1.0

1.3.4 Data operations

The HTTP methods that Findig will expose depends on the data operations that you’ve defined for your resource.
By default, GET operations are exposed for every resource, since we have to define resource functions that get the
resources’s data. Makes sense right?

But what about the other HTTP methods? We can support PUT requests by telling Findig how to write new resource
data:

@resource.model("write")
def write_new_data(data):

Er, we don't have a database set up, so let's just complain
that it's poorly formatted.
from werkzeug.exceptions import BadRequest
raise BadRequest

That .model() function is actually a function available by default on Resource instances that lets you provide
functions that manipulate resource data. Here, we’re specifying a function that writes new data for the resource, and
its only argument is the new data that should be written, taken from the request body. Here’s a complete list of data
operations that you can add, and what they should do:

Oper-
ation

Argu-
ments

Description

write data Replaces completely the data for the resource, and enables PUT requests on the resource.
make data Creates a new child resource with the input data. It should return a mapping of values that can

be used to route to the resource. If present, it enables POST requests.
delete Delete’s the resource’s data and enables DELETE requests on the resource.

1.3.5 Restricting HTTP Methods

Sometimes, your might define more data operations for a resource than you want directly exposed on the API. You
can restrict the HTTP methods for a resource through it’s route:

@app.route("/resource", methods=['GET', 'DELETE'])
def resource():

return some resource data
pass

@resource.model('write')
def write_resource(data):

save the resource data
pass

@resource.model('delete')
def delete_resource():

delete the resource
pass

PUT requests to this resource will fail with status 405: METHOD NOT ALLOWED, even though we have a write
operation defined.

1.3.6 Custom applications

Suppose you wanted to build an API that wasn’t JSON (hey, I’m not here to judge)? That’s entirely possible. You just
have to tell Findig how to convert to and from the content-types that you plan to use.

8 Chapter 1. User Guide

Findig Documentation, Release 0.1.0

from findig import App

app = App()

@app.formatter.register("text/xml")
def convert_to_xml(data):

s = to_xml(data)
return s # always return a string

@app.parser.register("text/xml")
def convert_from_xml(s)

obj = from_xml(s)
return obj

Pretty straightforward stuff; convert_to_xml is a function that takes resource data and converts it
to an xml string. We register it as the data formatter for the text/xml content-type using the
@app.formatter.register("text/xml") decorator. Whenever a client sends an Accept header with the
text/xml content-type, this formatter will be used. Similarly, convert_from_xml converts an xml string to
resource data, and is called when a request with a text/xml content-type is received.

That’s great, but what happens if the client doesn’t send an Accept header, or if it sends request content without a
content-type? Well, Findig will send a text/plain response (it calls str on the resource data; hardly elegant) in
the first case, and send back an UNSUPPORTED MEDIA TYPE error in the second case. To avoid this, you can set
a default content-type that is assumed if the client doesn’t specify one. Here’s the same example from above setting
text/xml as the default:

from findig import App

app = App()

@app.formatter.register("text/xml", default=True)
def convert_to_xml(data):

s = to_xml(data)
return s # always return a string

@app.parser.register("text/xml", default=True)
def convert_from_xml(s)

obj = from_xml(s)
return obj

Tip: findig.json.App does this for the application/json content-type.

An application can register as many parsers and formatters as it needs, and can even register them on specific resources.
Here’s how:

from pickle import dumps
from findig import App

app = App()
app.formatter.register("x-application/python-pickle", dumps, default=True)

@app.route("/my-resource")
def resource():

return {
"name": "Jon",
"age": 23,

}

1.3. Quickstart 9

Findig Documentation, Release 0.1.0

@resource.formatter.register("text/xml")
def format_resource(data):

return "<resource><name>{}</name><age>{}</age></resource>".format(
data['name'],
data['age']

)

So this app has a global formatter that pickles resources and returns them to the client (look, it’s just an example,
okay?). However, it has a special resource that can handle text/xml responses as well, using the resource-specific
formatter that we defined.

1.4 taskman — A tutorial

Our tutorial is a simple API that lets you create tasks, edit them, and mark them as finished.

1.4.1 The basic application

Let’s go ahead and create our app and declare our resources. They won’t do anything for now, but will help us get a
firm idea of how the API is laid out.

Add the following to a file and save it as taskman.py

from findig.json import App

app = App()

@app.route("/tasks/<id>")
@app.resource
def task(id):

return {}

@app.route("/tasks/")
@task.collection
def tasks():

return []

We want our API to serve JSON resources, so we’ve imported and initialized findig.json.App. We could’ve
supported a different data format, but we’d have to write the code to convert the resources ourselves, since Findig only
includes converters for JSON. For this tutorial we’ll just stick to JSON (it’s pretty darn good!).

Next, we declare a resource called task. This resource is going to represent a single task, and provide an interface
for us to delete and update individual tasks. There’s quite a bit going on here:

• @app.route("/tasks/<id>") assigns a URL rule to our task resource. The URL rule tells findig what
sort of URLs should route to our resource. The second part of the rule is interesting; by enclosing id in angle
brackets, we’ve created a variable part of the URL rule. When matching a URL, Findig will match the static
part of the rule exactly, but try to match other parts of the URL to the variables. So for example, /tasks/foo
and /tasks/38 will route to this resource, using ’foo’ and ’38’ as the id (variable part) respectively. This
kinda important, because we can use just one resource to group all of our tasks together, but use the variable part
URL to identify the exact task that we’re referring to. By the way, here’s the documentation for app.route.

• @app.resource declares a resource. app.resource wraps a resource function and returns a
findig.resource.Resource. This means that in our code, task will be replaced by a Resource ob-
ject (Resources act like functions, so you can still call it if you want to).

10 Chapter 1. User Guide

Findig Documentation, Release 0.1.0

• task(id) is our resource function for a task. Notice that it takes an argument called id. This is because of our
URL rule; for every variable part in a URL rule, a resource function must accept a named argument (keyword
arguments work too) that matches the variable part’s name. So when task is called by Findig, it will be called
with an id that’s extracted from the URL. Resource functions are supposed to return the resource’s data (in other
words, what should be sent back on a GET request). Our resource function returns an empty dictionary. That’s
because the JSON converters know how to work with dictionaries; if we were to send a GET request to any task
right now (example: GET /tasks/foo) we would receive an empty JSON object as the response.

The next block declares our tasks collection. We’ll use it to get a list of all of our tasks, and to add new tasks to that
list. Bit by bit, here’s what is going on in that code:

• @app.route("/tasks/") should be familiar. We’re once again assigning a URL rule, only this time there
are no variable parts so it will match only one URL (/tasks/).

• @task.collection declares tasks as a collection containing task resource instances. Remember how
app.resource turned our resource function into a Resource? Well that’s where the collection function
comes from. Here, collection() wraps a resource function and turns it into a Collection (which are
callable, just like a Resource—in fact, they are Resources).

• tasks() is our resource function for the tasks collection. We return an empty list because the JSON converters
know how to turn an iterable into a JSON list; if we sent GET /tasks to our API, we’d get an empty JSON
list as the response.

1.4.2 Serving it up

If we were deploying a production application, we’d be using a web server like Apache to serve up our API. But since
this is a measly tutorial, we can get away with using Werkzeug’s built-in development server (see that ‘development’
in front of server? It means you should only use it during development ;)).

Go ahead and add this to the bottom of taskman.py:

if __name__ == '__main__':
from werkzeug.serving import run_simple
run_simple("localhost", 5000, app, use_reloader=True, use_debugger=False)

This serves up our application on port 5000 on the local machine. use_reloader=True is a handy setting that
reloads the application anytime your change the source file. You might be tempted to set use_debugger=True,
but don’t; we set it to False (the default) deliberately to make the point that since the werkzeug debugger is tailored
for HTML, it is almost certainly useless for debugging a Findig app.

1.4.3 Adding our data models

We’re going to need to store our tasks somewhere. Findig uses data models to figure out how to interface with stored
resource data. This section is a little long-winded, because it presents the roundabout way of declaring models, and
then promptly throws all of that away and uses a shorter method instead (don’t hate, okay? This is still a tutorial, so
it’s important for you to grasp the underlying concepts).

Explicit data models

We can declare data model functions to instruct Findig on how to access stored data for each resource. Whenever we
do that, we’re using explicit data models. That’s what we’ll cover in this section.

We won’t use any of the code we add in this section in our final application, but it’s important that we go through it
anyway so that you grasp the underlying concepts. If you don’t care for any of that, you can probably skip ahead to
Data sets (but don’t blame me if you don’t understand how they work!).

1.4. taskman — A tutorial 11

Findig Documentation, Release 0.1.0

Let’s start with the task resource. Remember that we want to use that resource to update and delete individual tasks.
Add this code to taskman.py

TASKS = []

@task.model("write")
def write_task(data):

TASKS[task.id] = data

@task.model("delete")
def delete_task():

del TASKS[task.id]

TASKS = [] sets up a global module-level list that tracks all of our tasks. Since this is throwaway code anyway,
there’s no harm in storing our tasks in memory like this; it’ll never really get used! Were this a production application,
then you would be fully expected to use a more responsible data storage backend. And if you didn’t, well, you’d just
have to face the consequences, wouldn’t you?

Now, the first interesting thing happening here is the @task.model("write") declaration. This is declaring
a write_tasks as a function that can write new data for a specific task. It gets passed a mapping of fields, directly
converted from data send by the requesting client. The next interesting thing is task.id. During a request to our
task resource, task.id will bind to the value of the id URL variable.

Tip: Anytime a URL rule with variable parts is used to route to a resource, Findig binds the values of those variables
to the resource for the duration of the request. This binding is completely context safe, meaning that even when
requests are running on multiple threads, {resource}.{var} will always bind to the correct value.

Similarly, task.model("delete") declares delete_task as a function that deletes a task. Delete model functions
don’t take any arguments.

Whenever we introduce model functions, Findig will usually enable additional request methods which correspond
somewhat to the model functions. This table gives the model functions, their signatures, and corresponding request
methods:

Model function Request method Supported resource type
write(data:mapping) PUT Resource
delete() DELETE Resource
make(data:mapping) -> token POST Collection

You may notice that a “make” model is to be attached to a Collection rather than a Resource. It must however,
create a resource instance of the Resource that the collection collects. The token returned from the “make” model
function is a special mapping with enough data to identify the resource instance that was created. By default, you
should make sure that it has at least the same fields as the arguments to the resource instance’s resource function.

Anyway, from the table, you should be able to see that our task resource now supports PUT and DELETE requests.
Go ahead and test them out (Remember to send application/json content with your PUT requests)!

But wait, we’re still not done. Remember that GET /tasks/<id> still always returns an empty JSON object, no
matter if we’ve already PUT a task there. We need to fix that by updating the resource function to return the appropriate
task data; change you definition of task to look like this:

@app.route("/tasks/<id>")
@app.resource
def task(id):

return TASKS[id]

But what if we get a URL that includes an id that is not in TASKS? That’s okay! Findig automatically converts a
LookupError into an HTTP 404 response. So when the invalid id throws a KeyError (a LookupError sub-
class), it won’t crash; it’ll tell the requesting client that it doesn’t know what task it’s asking about. Of course, if you’re

12 Chapter 1. User Guide

https://docs.python.org/3/library/exceptions.html#LookupError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#LookupError

Findig Documentation, Release 0.1.0

still not convinced, you can go ahead and catch that KeyError and raise a werkzeug.exceptions.NotFound
error yourself.

Next, we’ll add the model for tasks:

@tasks.model("make")
def make_task(data):

token = {"id": str(uuid4())}
TASKS[token['id']] = data
return token

update the resource function for our tasks collection:

@app.route("/tasks/")
@task.collection
def tasks():

return TASKS

and finally add the following import to the top of the file:

from uuid import uuid4

Not a whole lot new is going on; In our “make” model, we’re using the built-in uuid.uuid4() function to generate
random ids for our tasks (nobody ever said our ids had to be numeric!), and we’re storing the data receive with that id.
Finally, we return the id as part of the token (remember that the token needs to contain at least enough data to identify
the task instance, and here, all we need is id!).

And that’s it! We’ve built out our explicit data model. Now, let’s go throw it away...

Data sets

Data sets are an alternative to explicit data model functions. They have the advantage of being far less verbose, but
aren’t quite as flexible. However, for most resources, you may find that you don’t need that extra bit of flexibility, so a
data set is perfectly fine.

Essentially, a data set is a special collection of records, each corresponding to a single resource instance. Instead of
returning a straight-up list from a collection resource function, we can return a data set instead. Since a data-set is
already an iterable object, we don’t actually lose anything by dropping one in where we would normally return a list
or a generator. However, with a little coaxing, we can get Findig to inspect the data set and derive a model from it, so
you don’t have to type one out.

We’re going to be using the included findig.extras.sql.SQLASet (which requires SQLAlchemy) with an
SQLite table for our tasks. There’s also a findig.extras.redis.RedisSet, but it relies on a redis server
which you may not have on your system (that’s a little beyond the scope of this tutorial). Unlike RedisSet, SQLASet
does require a table schema to be declared, so the code is a little more verbose.

Let’s dig in! Add this to taskman.py right after your app initialization:

db = SQLA("sqlite:///tasks.sqlite", app=app)
validator = Validator(app)

class Task(db.Base):
id = Column(Integer, primary_key=True)
title = Column(String(150), nullable=False)
desc = Column(String, nullable=True)
due = Column(DateTime, nullable=False)

and add the following imports:

1.4. taskman — A tutorial 13

https://docs.python.org/3/library/exceptions.html#KeyError
http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.NotFound
https://docs.python.org/3/library/uuid.html#uuid.uuid4

Findig Documentation, Release 0.1.0

from sqlalchemy.schema import *
from sqlalchemy.types import *
from findig.extras.sql import SQLA, SQLASet

Tip: If the above import gives you an ImportError, it means that you don’t have SQLAlchemy installed. You’ll
need to install it to continue (try: pip install sqlalchemy in your shell, if you have pip).

All we’ve done here is declare an SQLAlchemy orm schema. findig.extras.sql.SQLA is a helper class for
using SQLAlchemy inside a findig application. The first argument we pass here sets up the database engine (we store
them in an SQLite database called ‘tasks.sqlite’; you’ll need to make sure that your application process has write
permission to the working directory so that it can create that file), and we pass our app as a keyword argument.

After that, we declare our tasks table and its ORM mapping. We set up our schema with three columns (id, title and
desc).

Next up, let’s use that schema to create an SQLA data set. Replace the declaration for your tasks collection with this
code:

@app.route("/tasks/")
@task.collection(lazy=True)
def tasks():

return SQLASet(Task)

So some interesting changes. First up, we’ve added the lazy=True argument to task.collection. This gives
Findig the heads-up that this resource function returns a data set (meaning that simply calling it does not make any
queries to the database). As a result, Findig is able to inspect the return value when setting things up. Since it is a data
set, Findig uses that to add our model functions for us.

To complete our transition, replace the resource declaration for task with this code:

@app.route("/tasks/<id>")
@app.resource(lazy=True)
def task(id):

return tasks().fetch(id=id)

findig.extras.sql.SQLASet.fetch() can be thought of as a query. It returns the first matching item as a
MutableRecord, which Findig also knows how to extract data model functions from.

As a result, we don’t need our data model functions anymore, so you should go ahead and delete them.

1.4.4 Validating data

At this point, we’ve developed a working web application, but it’s still incomplete. Why, you ask? Because we haven’t
actually put an constraints on the data that we receive. As it stands, we could send any old data to our API and get
away with it, without a peep in protest from the application.

Note: Well that’s not strictly true; since we’ve added an SQL schema for the tasks, SQLASet will try to make sure
that any data that it receives conforms to the schema at the very least. Still, it doesn’t perform any checks on the actual
values or do any type conversions for us, and so we need to do that ourselves.

So what sort of constraints are we talking? Let’s look at the fields in our task schema again, to get a better idea:

validator = Validator(app)

class Task(db.Base):
id = Column(Integer, primary_key=True)

14 Chapter 1. User Guide

Findig Documentation, Release 0.1.0

title = Column(String(150), nullable=False)
desc = Column(String, nullable=True)
due = Column(DateTime, nullable=False)

First, let’s look at the id field. This field is an integer primary key, so the engine will automatically generate one for
us (as it does with all integer primary key fields :D); we don’t need to put any constraints here because we won’t be
asking for one from the client.

Next there is the title field. It’s a string with a maximum length of 150 characters. It’s tempting to have our
validation engine enforce this for us, but if we pass a string longer than 150 characters to the database engine, it will
truncate it for us. I think that’s a reasonable compromise. We also see that the field is marked as nullable=False;
this meaans that it is required.

Our desc field doesn’t have much in the way of constraints; it’s probably okay to just let our user put any old thing
in there.

Finally, our due field is meant to store a date/time. We should make sure that whatever we receive from the client for
‘due’ can be parsed into a date/time. Also, note that this field is also required.

Great! So let’s go set all of this up. The first thing we need to do is create a Validator for our application. Add this
code right after you initialize your app:

validator = Validator(app)

and add this import:

from findig.tools.validator import Validator

Next up, let’s use the validator to enforce the constraints that we’ve identified. First up, I think it’s a good idea to make
sure that we don’t get any extra fields. We can do that by adding this decorator at the top of our resource declaration
for task:

@validator.restrict("desc", "*due", "*title")

So what’s happening? We’re telling the validator to only accept the fields desc, due and title. But what’s with
the *? If you guessed that the field is required, you’re right! restrict() accepts a variable number of field names,
so we can restrict our resource input data to any number of fields we want.

Tip: We’ve only set a validation rule for task, but what about tasks? Since tasks is a collection of task
instances, the validator will check input for tasks with the rules we’ve defined for task by default. If you want to
disable this behavior, you can pass include_collections=False to the validator constructor.

All we have to do now is check that the due date is date/time string, and parse it into a datetime object. With
Validator.enforce, we can supply a converter for the due field. A converter can by a simple type, a magic
string, or an application-defined function that takes a string as input and returns the parsed output. Here’s what such a
function can look like for a date/time field like due:

def convert_date(string):
import datetime
format = "%Y-%m-%d %H:%M:%S%z"
return datetime.datetime.strptime(string, format)

In fact, Validator.date is a static method that simplifies this pattern; it takes a date/time format as its argument
and returns a converter function that parses a datetime object using that format. That’s what we’ll use to check our
due field. Add this decorator to our task declaration:

@validator.enforce(due=validator.date("%Y-%m-%d %H:%M:%S%z"))

1.4. taskman — A tutorial 15

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Findig Documentation, Release 0.1.0

With that, we’ve set up validation for our request input. You should go ahead and try sending requests to the API
we’ve created.

1.4.5 Calling our API

By now, we have a pretty decent API, but how exactly do we use it? First, let’s start our development server:

$ python taskman.py

* Running on http://localhost:5000/ (Press CTRL+C to quit)

* Restarting with stat

Our development server is running on port 5000. Calling our API is a matter of sending application/jsonHTTP
requests to the server. For testing, you’ll need a program that can send application/json requests, since your
browser probably doesn’t provide an interface for this. The examples in this section will use the command-line tool
cURL, but they’ll include all the details your need to send the requests with any tool you prefer to use.

Tip: If you prefer a graphical interface, you might want to try the Postman Google Chrome extension (pictured
below).

Listing our tasks

Send a GET request to /tasks/. Here’s how to do it in cURL:

$ curl localhost:5000/tasks/
[]

The response is a JSON list containing all of the tasks that we have created. Since we haven’t created any yet, we get
an empty list.

16 Chapter 1. User Guide

http://http://curl.haxx.se//
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop

Findig Documentation, Release 0.1.0

Creating a new task

To create a new task, we send a POST request to /tasks/. The request should have a Content-Type:
application/json header, and the request body must be a JSON object containing the attributes for our new
task:

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title": "My Task"}' localhost:5000/tasks/
HTTP/1.0 400 BAD REQUEST
Content-Type: application/json
Content-Length: 91
Server: Werkzeug/0.10.4 Python/3.4.2
Date: Sat, 18 Jul 2015 03:33:58 GMT

{"message": "The browser (or proxy) sent a request that this server could not understand."}

What’s with the error here? Well, remember that we’ve set up a validator for our tasks resource to require a ‘due’
field with a parseable date/time. Let’s modify our request to include one:

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title": "My Task", "due": "2015-07-19 00:00:00+0400"}' localhost:5000/tasks/
HTTP/1.0 201 CREATED
Content-Length: 9
Content-Type: application/json
Date: Sat, 18 Jul 2015 03:40:01 GMT
Location: http://localhost:5000/tasks/1
Server: Werkzeug/0.10.4 Python/3.4.2

{"id": 1}

Notably, the status code returned is 201 CREATED and not 200 OK. Additionally, Findig will try to fill the
Location header, as long as the data returned from the collection resource function is enough to build a URL
for the created resource instance. Our resource function uses SQLASet, which returns the primary key fields.

Editing a task

For this one, we send a PUT request to the task URL. Just like when creating a task, The request should have a
Content-Type: application/json header, and the request body must be a JSON object containing the
attributes for our updated task. We must send all fields, including the ones that we’re not updating, since this request
type overwrites all of the task’s data (unfortunately, Findig doesn’t support PATCH yet):

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title": "My Task", "due": "2015-07-19 00:00:00+0400", "desc": "My awesome task dawg."}' localhost:5000/tasks/1
HTTP/1.0 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 0
Server: Werkzeug/0.10.4 Python/3.4.2
Date: Sat, 18 Jul 2015 03:47:00 GMT

Deleting a task

You can probably guess this one; to do this, we send a DELETE request to the task’s URL. Let’s delete that task we
just created; we’re fickle like that:

$ curl -i -X DELETE localhost:5000/tasks/1
HTTP/1.0 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 0

1.4. taskman — A tutorial 17

https://github.com/geniphi/findig/issues/9

Findig Documentation, Release 0.1.0

Server: Werkzeug/0.10.4 Python/3.4.2
Date: Sat, 18 Jul 2015 03:52:12 GMT

It works! It all works!

1.4.6 Customizing error output

Remember when we sent a POST request to /tasks/ without a required field and it gave us a cryptic error message?
We should probably do something about that. We’re gonna return a little bit more information to let the client know
what exactly has gone wrong.

To do this, we have to override the application’s default error handler, which Findig allows us to do for specific
exception types by default 1. The key is realising that Validator raises specific exceptions when something goes
wrong, all resolving to 400 BAD REQUEST:

• findig.tools.validator.MissingFields – Raised when the validator expects one or more required
fields, but the client does not send them.

• findig.tools.validator.UnexpectedFields – Raised when the validator receives one or more
fields that it does not expect.

• findig.tools.validator.InvalidFields – Raised when the validator receives one or more fields
that can’t be converted using the supplied converters.

Knowing this, we can update the app to send a more detailed error whenever a missing field is encountered:

@app.error_handler.register(MissingFields)
def on_missing_fields(err):

output = {
"error": {

"type": "missing_fields",
"fields": err.fields

},
"message": "The input is missing one or more parameters.",

}

app.make_response comes from findig.json.App, and is not
available on findig.App.
return app.make_response(output, status=400)

You’ll also want to import MissingFields:

from findig.tools.validator import MissingFields

Now, let’s send another request omitting a field:

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title": "My Task"}' localhost:5000/tasks/
HTTP/1.0 400 BAD REQUEST
Content-Type: application/json
Content-Length: 114
Server: Werkzeug/0.10.4 Python/3.4.2
Date: Sat, 18 Jul 2015 05:09:34 GMT

{
"error": {
"type": "missing_fields",

1 This can change in very specific circumstances. In particular, if you supply an error_handler argument to the application constructor,
then this method is no longer available; you would have to check for specific exceptions in the function body of your custom error_handler
instead.

18 Chapter 1. User Guide

Findig Documentation, Release 0.1.0

"fields": [
"due"

]
},
"message": "The input is missing one or more parameters."

}

As expected, this time we get a more detailed error response.

Here’s a little exercise for you; why don’t you go ahead and update the app to provide detailed messages for when the
client sends an unrecognized field, and for when the client sends badly formed data for the due field?

1.4.7 Wrapping up

Whew! Here’s the full source code for the app we’ve built:

from datetime import datetime

from findig.extras.sql import SQLA, SQLASet
from findig.json import App
from findig.tools.validator import Validator, MissingFields, UnexpectedFields, InvalidFields
from sqlalchemy.schema import *
from sqlalchemy.types import *

app = App()
db = SQLA("sqlite:///tasks.sqlite", app=app)
validator = Validator(app)

class Task(db.Base):
id = Column(Integer, primary_key=True)
title = Column(String(150), nullable=False)
desc = Column(String, nullable=True)
due = Column(DateTime, nullable=False)

@validator.restrict("*title", "desc", "*due")
@validator.enforce(due=validator.date("%Y-%m-%d %H:%M:%S%z"))
@app.route("/tasks/<id>")
@app.resource(lazy=True)
def task(id):

return tasks().fetch(id=id)

@app.route("/tasks/")
@task.collection(lazy=True)
def tasks():

return SQLASet(Task)

@app.error_handler.register(MissingFields)
def on_missing_fields(err):

output = {
"error": {

"type": "missing_fields",
"fields": err.fields

},

1.4. taskman — A tutorial 19

Findig Documentation, Release 0.1.0

"message": "The input is missing one or more parameters.",
}

app.make_response comes from findig.json.App, and is not
available on findig.App.
return app.make_response(output, status=400)

if __name__ == '__main__':
from werkzeug.serving import run_simple
run_simple("localhost", 5000, app, use_reloader=True, use_debugger=False)

We’ve designed an built a functioning API, but we’ve only used a subset of what Findig has to offer. Have a
look at Counter for a tool that counts hits to your resources (this is more useful than it sounds upfront). The
findig.tools.protector module provides utilies for restrict access to your API to authorized users/clients.

If you’re interested in supporting custom content-types, rather than just JSON, have a look at Custom applications.
The process is very similar to the custom error handler we built in this tutorial.

20 Chapter 1. User Guide

CHAPTER 2

API Documentation

This section isn’t ready yet. Please check back later.

2.1 Findig core modules

Findig provides a number of core modules that each typical application uses in some way (whether explicitly by the
application code, or internally by Findig). They are documented in these pages:

2.1.1 App — classes for creating WSGI callables

The core Findig namespace defines the Findig :class:App class, which is essential to building Findig applications.
Every :class:App is capable of registering resources as well as URL routes that point to them, and is a WSGI callable
that can be passed to any WSGI complaint server.

class findig.App(autolist=False)
Bases: findig.dispatcher.Dispatcher

request_class
The class used to wrap WSGI environments by this App instance.

alias of Request

build_context(environ)
Start a request context.

Parameters environ – A WSGI environment.

Returns A context manager for the request. When the context manager exits, the request context
variables are destroyed and all cleanup hooks are run.

Note: This method is intended for internal use; Findig will call this method internally on its own. It is not
re-entrant with a single request.

cleanup_hook(func)
Register a function that should run after each request in the application.

context(func)
Register a request context manager for the application.

A request context manager is a function that yields once, that is used to wrap request contexts. It is called at
the beginning of a request context, during which it yields control to Findig, and regains control sometime

21

Findig Documentation, Release 0.1.0

after findig processes the request. If the function yields a value, it is made available as an attribute on
findig.context.ctx with the same name as the function.

Example:

>>> from findig.context import ctx
>>> from findig import App
>>>
>>> app = App()
>>> items = []
>>> @app.context
... def meaning():
... items.extend(["Life", "Universe", "Everything"])
... yield 42
... items.clear()
...
>>> with app.test_context(create_route=True):
... print("The meaning of", end=" ")
... print(*items, sep=", ", end=": ")
... print(ctx.meaning)
...
The meaning of Life, Universe, Everything: 42
>>> items
[]

startup_hook(func)
Register a function to be run before the very first request in the application.

test_context(create_route=False, **args)
Make a mock request context for testing.

A mock request context is generated using the arguments here. In other words, context variables are set up
and callbacks are registered. The returned object is intended to be used as a context manager:

app = App()
with app.test_context():

This will set up request context variables
that are needed by some findig code.
do_some_stuff_in_the_request_context()

After the with statement exits, the request context
variables are cleared.

This method is really just a shortcut for creating a fake WSGI environ with
werkzeug.test.EnvironBuilder and passing that to build_context(). It takes the
very same keyword parameters as EnvironBuilder; the arguments given here are passed directly in.

Parameters create_route – Create a URL rule routing to a mock resource, which will
match the path of the mock request. This must be set to True if the mock request being
generated doesn’t already have a route registered for the request path, otherwise this method
will raise a werkzeug.exceptions.NotFound error.

Returns A context manager for a mock request.

class findig.json.App(indent=None, encoder_cls=None, autolist=False)
A findig.App that works with application/json data.

This app is pre-configured to parse incoming application/json data, output application/json data
by default and convert errors to application/json responses.

Parameters

22 Chapter 2. API Documentation

http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder
http://werkzeug.pocoo.org/docs/test/#werkzeug.test.EnvironBuilder
http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.NotFound

Findig Documentation, Release 0.1.0

• indent – The number of spaces to indent by when outputting JSON. By default, no inden-
tation is used.

• encoder_cls – A json.JSONEncoder subclass that should be used to serialize data
into JSON. By default, an encoder that converts all mappings to JSON objects and all other
iterables to JSON lists in addition to the normally supported simplejson types (int, float, str)
is used.

• autolist – Same as the autolist parameter in findig.App.

2.1.2 findig.content — Formatters, parsers and error handlers

These are helper implementations of content-handling ‘functions’ for parsing, formatting and error-handling. The
module exposes Parser, Formatter and ErrorHandler respectively, each of which acts like a function but
introduces some additional semantics.

Although this is the default behavior, Findig applications are not required to use to tools provided by this module and
may use any callable in their place.

Note: Instances of Formatter and Parser require an active request context to work when called.

class findig.content.ErrorHandler
A generic implementation of a error handler ‘function’.

A ErrorHandler collects handler functions for specific exception types, so that when it is called, it looks up
the appropriate handler for the exception that it is called with. The handler used is the closest superclass of the
exception’s type. If no handler was registered for the exception, then it is raised again.

register(err_type, handler)
Register a handler function for a particular exception type and its subclasses.

Parameters err_type – A type of Exception

Type BaseException or subclass.

Handler A function that will handle errors of the given type.

This method is also usable as a decorator factory:

handler = ErrorHandler()
@handler.register(ValueError)
def handle_value_err(e):

Handle a value error
pass

class findig.content.Formatter
A generic implementation of a formatter ‘function’.

A Formatter collects handler functions for specific mime-types, so that when it is called, it looks up the the
appropriate function to call in turn, according to the mime-type specified by the request’s Accept header.

register(mime_type, handler, default=False)
Register a handler function for a particular content-type.

Parameters

• mime_type – A content type.

• handler – A handler function for the given content type.

2.1. Findig core modules 23

https://docs.python.org/3/library/json.html#json.JSONEncoder

Findig Documentation, Release 0.1.0

• default – Whether the handler should be used for requests which don’t specify a pre-
ferred content-type. Only one default content type may be given, so if default=True
is set multiple times, only the last one takes effect.

Tip: This method can also be used as a generator factory.

class findig.content.Parser
A generic implementation of a parser ‘function’.

A Parser collects handler functions for specific mime-types, so that when it is called, it looks up the the
appropriate function to call in turn, according to the mime-type specified by the request’s Content-Type
header.

register(mime_type, handler, default=False)
Register a handler function for a particular content-type.

Parameters

• mime_type – A content type.

• handler – A handler function for the given content type.

• default – Whether the handler should be used for requests which don’t specify a pre-
ferred content-type. Only one default content type may be given, so if default=True
is set multiple times, only the last one takes effect.

Tip: This method can also be used as a generator factory.

2.1.3 findig.context — Request context variables

This module stores request context variables. That is, variables whose values are assigned during the handling of a
request and then cleared immediately after the request is done.

Important: With exception of ctx, all of the variables documented here are proxies to attributes of ctx. For example,
app is a proxy to ctx.app.

findig.context.ctx = <werkzeug.local.Local object>
A global request context local that can be used by anyone to store data about the current request. Data stored on
this object will be cleared automatically at the end of each request and call only be seen on the same thread that
set the data. This means that data accessed through this object will only ever be relevant to the current request
that is being processed.

findig.context.app = <LocalProxy unbound>
The findig.App instance that responded to the request.

findig.context.request = <LocalProxy unbound>
An object representing the current request and a subclass of findig.App.request_class.

findig.context.url_adapter = <LocalProxy unbound>
An object representing a werkzeug.routing.MapAdapter for the current reques that can be used to build
URLs.

findig.context.dispatcher = <LocalProxy unbound>
The Dispatcher that registered the resource that the current request is directed to.

findig.context.resource = <LocalProxy unbound>
The AbstractResource that the current request is directed to.

24 Chapter 2. API Documentation

http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.MapAdapter

Findig Documentation, Release 0.1.0

findig.context.url_values = <LocalProxy unbound>
A dictionary of values that have been extracted from the request path by matching it against a URL rule.

2.1.4 findig.data_model — Data access for Findig applications

This module defines data models, which implement data access for a particular resource. In a typical Findig appli-
cation, each resource has an AbstractDataModel attached which has functions defined implementing the data
operations that are supported by that resource.

By default, Resources have a DataModel attached, but this can be replaced with any concrete
AbstractDataModel.

class findig.data_model.AbstractDataModel
Bases: collections.abc.Mapping

An object responsible for managing the data for a specific resource. Essentially, it is a mapping of data operations
to the functions that perform.

The following data operations (and their signatures) are supported:

•read()
Retrieve the data for the resource.

•write(data)
Replace the resource’s existing data with the new data. If the resource doesn’t exist yet, create it.

•delete()
Completely obliterate a resource’s data; in general the resource should be thought to no longer exist
after this occurs.

•make(data)
Create a child resource.

Returns A mapping that can identify the created child (i.e., a key).

To implement this abstract base class, do either of the following:

•Implement methods on your subclass with the names of the data operations you want your model to
support. For example, the following model implements read and write actions:

class ReadWriteModel(AbstractDataModel):
def read():

'''Perform backend read.'''

def write(new_data):
'''Perform backend write.'''

•Re-implement the mapping interface on your subclasses, such that instances will map from a data op-
eration (str) to a function that implements it. This requires implementing __iter__, __len__ and
__getitem__ at a minimum. For an example, take a look at the source code for this class.

class findig.data_model.DataModel
Bases: findig.data_model.AbstractDataModel, collections.abc.MutableMapping

A generic, concrete implementation of AbstractDataModel

This class is implemented as a mutable mapping, so implementation functions for data operations can be set,
accessed and deleted using the mapping interface:

>>> dm = DataModel()
>>> dm['read'] = lambda: ()

2.1. Findig core modules 25

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

Findig Documentation, Release 0.1.0

>>> 'read' in dm
True

Also, be aware that data model instances can be called to return a decorator for a specific data operation:

>>> @dm('write')
... def write_some_data(data):
... pass
...
>>> dm['write'] == write_some_data
True

2.1.5 findig.dispatcher – Low-level dispatchers for Findig applications

This low-level module defines the Dispatcher class, from which findig.App derives.

class findig.dispatcher.Dispatcher(formatter=None, parser=None, error_handler=None,
pre_processor=None, post_processor=None)

A Dispatcher creates resources and routes requests to them.

Parameters

• formatter – A function that converts resource data to a string string suitable
for output. It returns a 2-tuple: (mime_type, output). If not given, a generic
findig.content.Formatter is used.

• parser – A function that parses request input and returns a 2-tuple: (mime_type, data). If
not given, a generic findig.content.Parser.

• error_handler – A function that converts an exception to a Response. If not given, a
generic findig.content.ErrorHandler is used.

• pre_processor – A function that is called on request data just after is is parsed.

• post_processor – A function that is called on resource data just before it is formatted.

This class is fairly low-level and shouldn’t be instantiated directly in application code. It does however serve as
a base for findig.App.

formatter
If a formatter function was given to the constructor, then that is used. Otherwise, a generic
findig.content.Formatter is used.

parser
The value that was passed for parser to the constructor. If no argument for parser was given to the
constructor, then a generic findig.content.Parser is used.

error_handler
The value that was passed for error_handler to the constructor, or if None was given, then a generic
findig.content.ErrorHandler.

response_class
A class that is used to construct responses after they’re returned from formatters.

alias of Response

build_rules()
Return a generator for all of the url rules collected by the Dispatcher.

Return type Iterable of werkzeug.routing.Rule

26 Chapter 2. API Documentation

http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.BaseResponse
http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule

Findig Documentation, Release 0.1.0

Note: This method will ‘freeze’ resource names; do not change resource names after this function is
invoked.

dispatch()
Dispatch the current request to the appropriate resource, based on which resource the rule applies to.

This function requires an active request context in order to work.

resource(wrapped, **args)
Create a findig.resource.Resource instance.

Parameters wrapped – A wrapped function for the resource. In most cases, this should be a
function that takes named route arguments for the resource and returns a dictionary with the
resource’s data.

The keyword arguments are passed on directly to the constructor for Resource, with the exception that
name will default to {module}.{name} of the wrapped function if not given.

This method may also be used as a decorator factory:

@dispatcher.resource(name='my-very-special-resource')
def my_resource(route, param):

return {'id': 10, ... }

In this case the decorated function will be replaced by a Resource instance that wraps it. Any key-
word arguments passed to the decorator factory will be handed over to the Resource constructor. If no
keyword arguments are required, then @resource may be used instead of @resource().

Note: If this function is used as a decorator factory, then a keyword parameter for wrapped must not be
used.

route(resource, rulestr, **ruleargs)
Add a route to a resource.

Adding a URL route to a resource allows Findig to dispatch incoming requests to it.

Parameters

• resource (Resource or function) – The resource that the route will be created for.

• rulestr (str) – A URL rule, according to werkzeug’s specification.

See werkzeug.routing.Rule for valid rule parameters.

This method can also be used as a decorator factory to assign route to resources using declarative syntax:

@route("/index")
@resource(name='index')
def index_generator():

return (...)

unrouted_resources
A list of resources created by the dispatcher which have no routes to them.

2.1.6 findig.resource — Classes for representing API resources

class findig.resource.Resource(wrapped=None, lazy=None, name=None, model=None, format-
ter=None, parser=None, error_handler=None)

Bases: findig.resource.AbstractResource

2.1. Findig core modules 27

https://docs.python.org/3/library/stdtypes.html#str
http://werkzeug.pocoo.org/docs/routing/#routing
http://werkzeug.pocoo.org/docs/routing/#werkzeug.routing.Rule

Findig Documentation, Release 0.1.0

A concrete implementation of AbstractResource.

This accepts keyword arguments only.

Parameters

• wrapped – A function which the resource wraps; it typically returns the data for that
particular resource.

• lazy – Indicates whether the wrapped resource function returns lazy resource data; i.e. data
is not retrieved when the function is called, but at some later point when the data is accessed.
Setting this allows Findig to evaluate the function’s return value after all resources have been
declared to determine if it returns anything useful (for example, a :class:DataRecord which
can be used as a model).

• name – A name that uniquely identifies the resource. If not given, it will be randomly
generated.

• model – A data-model that describes how to read and write the resource’s data. By default,
a generic findig.data_model.DataModel is attached.

• formatter – A function that should be used to format the resource’s data. By default, a
generic findig.content.Formatter is attached.

• parser – A function that should be used to parse request content for the resource. By
default, a generic findig.content.Parser is attached.

• error_handler – A function that should be used to convert exception into Responses.
By default, a findig.content.ErrorHandler is used.

model
The value that was passed for model to the constructor, or if None was given, a DataModel.

formatter
If a formatter function was given to the constructor, then that is used. Otherwise, a generic
findig.content.Formatter is used.

parser
The value that was passed for parser to the constructor. If no argument for parser was given to the
constructor, then a generic findig.content.Parser is used.

error_handler
The value that was passed for error_handler to the constructor, or if None was given, then a generic
findig.content.ErrorHandler.

collection(wrapped=None, **args)
Create a Collection instance

Parameters wrapped – A wrapped function for the collection. In most cases, this should be a
function that returns an iterable of resource data.

The keyword arguments are passed on to the constructor for :class:Collection, except that if no name is
given, it defaults to {module}.{name} of the wrapped function.

This function may also be used as a decorator factory:

@resource.collection(include_urls=True)
def mycollection(self):

pass

The decorated function will be replaced in its namespace by a Collection that wraps it. Any keyword
arguments passed to the decorator factory will be handed over to the Collection constructor. If no
keyword arguments are required, then @collection may be used instead of @collection().

28 Chapter 2. API Documentation

http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.BaseResponse

Findig Documentation, Release 0.1.0

compose_model(wrapper_args=None)

Noindex

Make a composite model for the resource by combining a lazy data handler (if present) and the model
specified on the resource.

Parameters wrapper_args – A set of arguments to call the wrapped function with, so that a
lazy data handler can be retrieved. If none is given, then fake data values are passed to the
wrapped function. In this case, the data-model returned must not be used.

Returns A data-model for the resource

This is an internal method.

get_supported_methods(model=None)
Return a set of HTTP methods supported by the resource.

Parameters model – The data-model to use to determine what methods supported. If none is
given, a composite data model is built from self.model and any data source returned by
the resource’s wrapped function.

handle_request(request, wrapper_args)
Dispatch a request to a resource.

See AbstractResource.handle_request() for accepted parameters.

class findig.resource.AbstractResource
Bases: object

Represents a very low-level web resource to be handled by Findig.

Findigs apps are essentially a collection of routed resources. Each resource is expected to be responsible for
handling some requests to a set of one or more URLs. When requests to such a URL is received, Findig looks-up
what resource is responsible, and hands the request object over to the resource for processing.

Custom implementations of the abstract class are possible. However, this class operates at a very low level in the
Findig stack, so it is recommended that they are only used for extreme cases where those low-level operations
are needed.

In addition to the methods defined here, resources should have a name attribute, which is a string
that uniquely identifies it within the app. Optional parser and formatter attributes corresponding to
findig.content.AbstractParser and finding.content.AbstractFormatter instances re-
spectively, will also be used if added.

build_url(values)
Build a URL for this resource.

The URL is built using the current WSGI environ, so this function must be called from inside a re-
quest context. Furthermore, the resource must have already been routed to in the current app (see:
findig.dispatcher.Dispatcher.route()), and this method must be passed values for any
variables in the URL rule used to route to the resource.

Parameters values (dict) – Values for the variables in a URL rule used to route to the
resource.

Example:

>>> from findig import App
>>> app = App()
>>> @app.route("/index/<int:num>")
... @app.resource
... def item(num):

2.1. Findig core modules 29

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

Findig Documentation, Release 0.1.0

... return {}

...
>>> with app.test_context(path="/index/1"):
... item.build_url(dict(num=4))
...
'/index/4'

This method is not abstract.

get_supported_methods()
Return a Python set of HTTP methods to be supported by the resource.

handle_request(request, url_values)
Handle a request to one of the resource URLs.

Parameters

• request (Request, which in turn is a subclass of
werkzeug.wrappers.Request) – An object encapsulating information about
the request. It is the same as findig.context.request.

• url_values – A dictionary of arguments that have been parsed from the URL routes,
which may help to better identify the request. For example, if a resource is set up to handle
URLs matching the rule /items/<int:id> and a request is sent to /items/43, then
url_values will be {’id’: 43}.

Returns This function should return data that will be transformed into an HTTP response. This
is usually a dictionary, but depending on how formatting is configured, it may be any object
the output formatter configured for the resource will accept.

class findig.resource.Collection(of, include_urls=False, bindargs=None, **keywords)
Bases: findig.resource.Resource

A Resource that acts as a collection of other resources.

Parameters

• of (Resource) – The type of resource to be collected.

• include_urls – If True, the collection will attempt to insert a url field on each of
the child items that it returns. Note that this only works if the child already has enough
information in its fields to build a url (i.e., if the URL for the child contains an :id fragment,
then the child must have an id field, which is then used to build its URL.

• bindargs – A dictionary mapping field names to URL variables. For example: a child
resource may have the URL variable :id, but have a corresponding field named user_id;
the appropriate value for bindargs in this case would be {’user_id’: ’id’}.

2.1.7 findig.wrappers — The Findig Request object

class findig.wrappers.Request(environ, populate_request=True, shallow=False)
Bases: werkzeug.wrappers.Request

A default request class for wrapping WSGI environs.

input
Request content that has been parsed into a python object. This is a read-only property.

max_content_length = 10485760
The maximum allowed content-length for the requests is set to 10MB by default.

30 Chapter 2. API Documentation

http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Request
http://werkzeug.pocoo.org/docs/wrappers/#werkzeug.wrappers.Request

Findig Documentation, Release 0.1.0

2.2 Higher-level tools

The findig.tools package contains modules each implementing higher-level tools for use on Findig applications
and resources. They’re completely optional, but using them should make writing a Findig application significantly
easier. These tools are implemented in such a way that they can be easily dropped into any Findig application to
provide additional functionality without making any underlying changes. The tools available are documented in the
following pages:

2.2.1 findig.tools.counter — Hit counters for apps and resources

The findig.tools.counter module defines the Counter tool, which can be used as a hit counter for your
application. Counters can count hits to a particular resource, or globally within the application.

class findig.tools.counter.Counter(app=None, duration=-1, storage=None)
A Counter counter keeps track of hits (requests) made on an application and its resources.

Parameters

• app (findig.App, or a subclass like findig.json.App.) – The findig application
whose requests the counter will track.

• duration (datetime.timedelta or int representing seconds.) – If given, the counter
will only track hits that occurred less than this duration before the current time. Otherwise,
all hits are tracked.

• storage – A subclass of AbstractLog that should be used to store hits. By default, the
counter will use a thread-safe, in-memory storage class.

attach_to(app)
Attach the counter to a findig application.

Note: This is called automatically for any app that is passed to the counter’s constructor.

By attaching the counter to a findig application, the counter is enabled to wrap count hits to the application
and fire callbacks.

Parameters app (findig.App, or a subclass like findig.json.App.) – The findig ap-
plication whose requests the counter will track.

partition(name, fgroup)
Create a partition that is tracked by the counter.

A partition can be thought of as a set of mutually exclusive groups that hits fall into, such that each hit can
only belong to one group in any single partition. For example, if we partition a counter by the IP address of
the requesting clients, each possible client address can be thought of as one group, since it’s only possible
for any given hit to come from just one of those addresses.

For every partition, a grouping function must be supplied to help the counter determine which group a
hit belongs to. The grouping function takes a request as its parameter, and returns a hashable result that
identifies the group. For example, if we partition by IP address, our grouping function can either return the
IP address’s string representation or 32-bit (for IPv4) integer value.

By setting up partitions, we can query a counter for the number of hits belonging to a particular group in
any of our partitions. For example, if we wanted to count the number GET requests, we could partition the
counter on the request method (here our groups would be GET, PUT, POST, etc) and query the counter for
the number of hits in the GET group in our request method partition:

2.2. Higher-level tools 31

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Findig Documentation, Release 0.1.0

counter = Counter(app)

Create a partition named 'method', which partitions our
hits by the request method (in uppercase).
counter.partition('method', lambda request: request.method.upper())

Now we can query the counter for hits belonging to the 'GET'
group in our 'method' partition
hits = counter.hits()
number_of_gets = hits.count(method='GET')

Parameters

• name – The name for our partition.

• fgroup – The grouping function for the partition. It must] be a callable that takes a
request and returns a hashable value that identifies the group that the request falls into.

This method can be used as a decorator factory:

@counter.partition('ip')
def getip(request):

return request.remote_addr

A counter may define more than one partition.

every(n, callback, after=None, until=None, resource=None)
Call a callback every n hits.

Parameters

• resource – If given, the callback will be called on every n hits to the resource.

• after – If given, the callback won’t be called until after this number of hits; it will be
called on the (after+1)th hit and every nth hit thereafter.

• until – If given, the callback won’t be called after this number of hits; it will be called
up to and including this number of hits.

If partitions have been set up (see partition()), additional keyword arguments can be given as
{partition_name}={group}. In this case, the hits are filtered down to those that match the par-
tition before issuing callbacks. For example, we can run some code on every 100th GET request after the
first 1000 like this:

counter.partition('method', lambda r: r.method.upper())

@counter.every(100, after=1000, method='GET')
def on_one_hundred_gets(method):

pass

Furthermore, if we wanted to issue a callback on every 100th request of any specific method, we can do
this:

@counter.every(100, method=counter.any)
def on_one_hundred(method):

pass

The above code is different from simply every(100, callback) in that every(100,
callback) will call the callback on every 100th request received, while the example will call the call-
back of every 100th request of a particular method (every 100th GET, every 100th PUT, every 100th POST
etc).

32 Chapter 2. API Documentation

Findig Documentation, Release 0.1.0

Whenever partition specs are used to register callbacks, then the callback must take a named argument
matching the partition name, which will contain the partition group for the request that triggered the
callback.

at(n, callback, resource=None)
Call a callback on the nth hit.

Parameters resource – If given, the callback will be called on every n hits to the resource.

Like every(), this function can be called with partition specifications.

This function is equivalent to every(1, after=n-1, until=n)

after_every(n, callback, after=None, until=None, resource=None)
Call a callback after every n hits.

This method works exactly like every() except that callbacks registered with every() are called
before the request is handled (and therefore can throw errors that interupt the request) while callbacks
registered with this function are run after a request has been handled.

after(n, callback, resource=None)
Call a callback after the nth hit.

This method works exactly like at() except that callbacks registered with at() are called before the
request is handled (and therefore can throw errors that interupt the request) while callbacks registered with
this function are run after a request has been handled.

hits(resource=None)
Get the hits that have been recorded by the counter.

The result can be used to query the number of total hits to the application or resource, as well as the number
of hits belonging to specific partition groups:

Get the total number of hits
counter.hits().count()

Get the number of hits belonging to a partition group
counter.hits().count(method='GET')

The result is also an iterable of (datetime.datetime, partition_mapping) objects.

Parameters resource – If given, only hits for this resource will be retrieved.

class findig.tools.counter.AbstractLog(duration, resource)
Abstract base for a storage class for hit records.

This module provides a thread-safe, in-memory concrete implementation that is used by default.

__init__(duration, resource)
Initialize the abstract log

All implementations must support this signature for their constructor.

Parameters

• duration (datetime.timedelta or int representing seconds.) – The length of time
for which the log should store records. Or if -1 is given, the log should store all records
indefinitely.

• resource – The resource for which the log will store records.

__iter__()
Iter the stored hits.

Each item iterated must be a 2-tuple in the form (datetime.datetime, partitions).

2.2. Higher-level tools 33

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime

Findig Documentation, Release 0.1.0

count(**partition_spec)
Return the number of hits stored.

If no keyword arguments are given, then the total number of hits stored should be returned.
Otherwise, keyword arguments must be in the form {partition_name}={group}. See
Counter.partition().

track(partitions)
Store a hit record

Parameters partitions – A mapping from partition names to the group that the hit matches
for the partition. See Counter.partition().

Counter example

Counters can be used to implement more complex tools. For example, a simple rate-limiter can be implemented using
the counter API:

from findig.json import App
from findig.tools.counter import Counter
from werkzeug.exceptions import TooManyRequests

app = App()

Using the counter's duration argument, we can set up a
rate-limiter to only consider requests in the last hour.
counter = counter(app, duration=3600)

LIMIT = 1000

@counter.partition('ip')
def get_ip(request):

return request.remote_addr

@counter.every(1, after=1000, ip=counter.any)
def after_thousandth(ip):

raise TooManyRequests("Limit exceeded for: {}".format(ip))

2.2.2 findig.tools.protector — Authorization tools

For many web API resources, it is desirable to restrict access to only specific users or clients that have been authorized
to use them. The tools in this module provide one mechanism for putting such restrictions in place.

The Protector is the core tool provided here. Its instances collect information about resources that should be
guarded against authorized access, and on each request, it checks that requests to those resources present a valid
authorization.

The precise authorization mechanism used by the protector is controlled by the GateKeeper abstract class for
which an application developer may supply their own concrete instance. Alternatively, some protectors supply their
own gatekeepers (example: BasicProtector uses RFC 2617#section-2 as its authorization mechanism).

Scopes

Protectors provide implicit support for ‘scopes’ (an idea borrowed from OAuth 2, with some enhancements). While
completely optional, their use provides a way allow access to only portions of an API while denying access to others.

34 Chapter 2. API Documentation

https://tools.ietf.org/html/rfc2617.html#section-2

Findig Documentation, Release 0.1.0

An authorization (commonly represented by a token) may have some scopes (identified by application chosen strings)
associated with it which define what portions of the API that a request using the authorization can access; only
resources belong to one of the scopes associated with the authorization, or resources that belong to no scopes are
accessible. Protectors provide a mechanism for marking a guarded resource as belonging to a scope.

For example, an application may provide a resource guarded under the scope foobar. In order to access the resource,
then a request must present authorization that encapsulates the foobar scope, otherwise the request is denied.

Tip: While recommended, using scopes is optional. In fact, some authorization mechanisms do not provide a way
to encapsulate scopes. To provide scope support for a custom authentication mechanism that encapsulates scopes, see
GateKeeper.

Findig extends authorization scopes with special semantics that can affect the way they are used by a protector. The
grammar for authorization scopes is given below:

auth_scope ::= scope_name[”+”permissions]
scope_name ::= scope_fragment{“/”scope_fragment}
permissions ::= permission{permission}
permission ::= “c” | “r” | “u” | “d”

scope_fragment is token that does not include the ‘+’ or ‘/’ characters. Whenever a permission is omitted, the ‘r’
is permission is implied.

Permissions are used to control which actions an authorization permits on the resources falling into its scope, according
to this table:

Action Permission
HEAD r
GET r
POST c
PUT c and u
DELETE d

So for example, an authorization with the scope foobar+rd can read and delete resources under the foobar scope.

The ‘/’ character is used to denote sub-scopes (and super-scopes). foo/bar is considered a sub-scope of foo (and
foo a super-scope of foo/bar), and so on. This is useful, because by default if a request possesses authorization for
a super-scope, then this implicitly authorizes its sub-scopes as well.

Scopes attached to a resource follow a simpler grammar:

resource_scope ::= scope_name

In other words, the permissions are omitted (because the protector multiplexes which permission is required from the
request method).

The findig.tools.protector.scopeutil module provides some functions for working with scopes.

Protectors

class findig.tools.protector.Protector(app=None, subscope_separator=”/”, gate-
keeper=None)

A protector is responsible for guarding access to a restricted resource:

2.2. Higher-level tools 35

Findig Documentation, Release 0.1.0

from findig import App

app = App()
protector = Protector(app)
protector.guard(resource)

Parameters

• app – A findig application instance.

• subscope_separator – A separator used to denote sub-scopes.

• gatekeeper – A concrete implementation of GateKeeper. If not provided, the protec-
tor will deny all requests to its guarded resources.

attach_to(app)
Attach the protector to a findig application.

Note: This is called automatically for any app that is passed to the protector’s constructor.

By attaching the protector to a findig application, the protector is enabled to intercept requests made to the
application, performing authorization checks as needed.

Parameters app (findig.App, or a subclass like findig.json.App.) – A findig appli-
cation whose requests the protector will intercept.

guard(resource[, scope[, scope[, ...]]])
Guard a resource against unauthorized access. If given, the scopes will be used to protect the resource
(similar to oauth) such that only requests with the appropriate scope will be allowed through.

If this function is called more than once, then a grant by any of the specifications will allow the request to
access the resource. For example:

This protector will allow requests to res with BOTH
"user" and "friends" scope, but it will also allow
requests with only "foo" scope.
protector.guard(res, "user", "friends")
protector.guard(res, "foo")

A protector can also be used to decorate resources for guarding:

@protector.guard
@app.route("/foo")
def foo():

This resource is guarded with no scopes; any authenticated
request will be allowed through.
pass

@protector.guard("user/email_addresses")
@app.route("/bar")
def bar():

This resource is guarded with "user/email_addresses" scope,
so that only requests authorized with that scope will be
allowed to access the resource.
pass

@protector.guard("user/phone_numbers", "user/contact")
@app.route("/baz")
def baz():

36 Chapter 2. API Documentation

Findig Documentation, Release 0.1.0

This resource is guarded with both "user/phone_numbers" and
"user/contact" scope, so requests must be authorized with both
to access this resource.
pass

NOTE: Depending on the value passed for 'subscope_separator' to the
protector's constructor, authenticated requests authorized with "user" scope
will also be allowed to access all of these resources (default behavior).

authenticated_client
Get the client id of the authenticated client for the current request, or None.

authenticated_user
Get the username/id of the authenticated user for the current request.

authorized_scope
Get the a list of authorized scopes for the current request.

class findig.tools.protector.BasicProtector(app=None, subscope_separator=’/’,
auth_func=None, realm=’guarded’)

A Protector that implements HTTP Basic Auth.

While straightforward, this protector has a few security considerations:

•Credentials are transmitted in plain-text. If you must use this protector, then at the very least the HTTPS
protocol should be used.

•Credentials are transmitted with each request. It requires that clients either store user credentials, or prompt
the user for their credentials at frequent intervals (possibly every request).

•This protector offers no scoping support; a grant from this protector allows unlimited access to any resource
that it guards.

auth_func(fauth)
Supply an application-defined function that performs authentication.

The function has the signature fauth(username:str, password:str) -> bool and should
return whether or not the credentials given authenticate successfully.

auth_func is usable as a decorator:

@protector.auth_func
def check_credentials(usn, pwd):

user = db.get_obj(usn)
return user.password == pwd

GateKeepers

Each Protector should be supplied with a GateKeeper that extracts any authorization information embedded in
a request. Protector uses a default gatekeeper which denies all requests made to its guarded resources.

An application may provide its own gatekeeper that implements the desired authorization mechanism. That’s done by
implementing the GateKeeper abstract base class.

class findig.tools.protector.GateKeeper
To implement a gatekeeper, implement at least check_auth() and get_username().

check_auth()
Try to perform an authorization check using the request context variables.

2.2. Higher-level tools 37

Findig Documentation, Release 0.1.0

Perform the authorization check using whatever mechanism that the gatekeeper’s authorization is handled.
If authorization fails, then an Unauthorized error should be raised.

Return a ‘grant’ that will be used to query the gatekeeper about the authorization.

get_clientid(grant)
Return the client that sent the request to the grant. (Optional)

get_scopes(grant)
Return a list of scopes that the grant is authorized with. (Optional)

get_username(grant)
Return the username/id of the user that authorized the grant.

2.2.3 findig.tools.protector.scopeutil — tools for working with auth
scopes

These functions are used protectors to implement scoping.

findig.tools.protector.scopeutil.check_encapsulates(root, child, sep=’/’)
Check that one scope item encapsulates of another.

A scope item encapsulates when it is a super-scope of the other, and when its permissions are a superset of the
other’s permissions.

This is used to implement sub-scopes, where permissions granted on a broad scope can be used to imply per-
missions for a sub-scope. By default, sub-scopes are denoted by a preceeding ‘/’.

For example, a scope permission if user+r is granted to an agent, then that agent is also implied to have been
granted user/emails+r, user/friends+r and so on.

Parameters

• root – A super-scope

• child – A potential sub-scope

• sep – The separator that is used to denote sub-scopes.

findig.tools.protector.scopeutil.compress_scope_items(scopes, default_mode=’r’)
Return a set of equivalent scope items that may be smaller in size.

Input scope items must be a normalized set of scope items.

findig.tools.protector.scopeutil.normalize_scope_items(scopes, default_mode=’r’,
raise_err=True)

Return a set of scope items that have been normalized.

A normalized set of scope items is one where every item is in the format:

norm_scope ::= scope_name+permission

Input scope items are assumed to be ‘r’ by default. Example, the scope item user will normalize to user+r.

Input scope items that contain more than one permission are expanded to multiple scope items. For example the
scope item user+ud is expanded to (user+u, user+d).

Note that permissions are atomic, and none implies another. For example, user+u will expand to user+u and
NOT (user+r, user+u).

Parameters

38 Chapter 2. API Documentation

http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.Unauthorized

Findig Documentation, Release 0.1.0

• scopes – A list of scope items.

• default_mode – The permission that should be assumed if one is omitted.

• raise_err – If True, malformed scopes will raise a ValueError. Otherwise they are
omitted.

findig.tools.protector.scopeutil.ANY = {‘$^&#THISISGARBAGE#*@&@#$*@$&DFDF#&#@&@&##*&@DHJGDJH#@&*^@#*+crud’}
A special scope item that implicitly encapsulates all other scope items

2.2.4 findig.tools.validator — Request input validators

The findig.tools.validator module exposes the Validator which can be used to validate an application
or request’s input data.

Validators work by specifying a converter for each field in the input data to be validated:

validator = Validator(app)

@validator.enforce(id=int)
@app.route("/test")
def resource():

pass

@resource.model("write")
def write_resource(data):

assert isinstance(data['id'], int)

If the converter fails to convert the field’s value, then a 400 BAD REQUEST error is sent back.

Converters don’t have to be functions; they can be a singleton list containing another converter, indicating that the field
is expected to be a list of items for which that converter works:

@validator.enforce(ids=[int])
@app.route("/test2")
def resource2():

pass

@resource2.model("write")
def write_resource(data):

for id in data['ids']:
assert isinstance(id, int)

Converters can also be string specifications corresponding to a pre-registered converter and its arguments. All of
werkzeug’s builtin converters and their arguments and their arguments are pre-registered and thus usable:

@validator.enforce(foo='any(bar,baz)', cid='string(length=3)')
@app.route("/test3")
def resource3():

pass

@resource3.model("write")
def write_resource(data):

assert data['foo'] in ('bar', 'baz')
assert len(data['cid']) == 3

exception findig.tools.validator.ValidationFailed
Raised whenever a Validator fails to validate one or more fields.

2.2. Higher-level tools 39

https://docs.python.org/3/library/exceptions.html#ValueError
http://werkzeug.pocoo.org/docs/routing/#builtin-converters

Findig Documentation, Release 0.1.0

This exception is a subclass of werkzeug.exceptions.BadRequest, so if allowed to bubble up, findig
will send a 400 BAD REQUEST response automatically.

Applications can, however, customize the way this exception is handled:

from werkzeug.wrappers import Response

This assumes that the app was not supplied a custom error_handler
function as an argument.
If a custom error_handler function is being used, then
do a test for this exception type inside the function body
and replicate the logic
@app.error_handler.register(ValidationFailed)
def on_validation_failed(e):

Construct a response based on the error received
msg = "Failed to convert input data for the following fields: "
msg += str(e.fields)
return Response(msg, status=e.status)

fields
A list of field names for which validation has failed. This will always be a complete list of failed fields.

validator
The Validator that raised the exception.

exception findig.tools.validator.UnexpectedFields(fields, validator)
Bases: findig.tools.validator.ValidationFailed

Raised whenever a resource receives an unexpected input field.

exception findig.tools.validator.MissingFields(fields, validator)
Bases: findig.tools.validator.ValidationFailed

Raised when a resource does not receive a required field in its input.

exception findig.tools.validator.InvalidFields(fields, validator)
Bases: findig.tools.validator.ValidationFailed

Raised when a resource receives a field that the validator can’t convert.

class findig.tools.validator.Validator(app=None, include_collections=True)
Bases: object

A higher-level tool to be used to validate request input data.

Parameters

• app (findig.App) – The Findig application that the validator is attached to.

• include_collections – If True, any validation rules set on any resource will also be
used for any Collection that collects it. Even when this argument is set, inherited rules
can still be overridden by declaring rules specifically for the collection.

Validators are only capable of validating request input data (i.e., data received as part of the request body). To
validate URL fragments, consider using converters in your URL rules. See werkzeug’s routing reference.

Validators work by specifying converters for request input fields. If a converter is specified, the validator will
use it to convert the field and replace it with the converted value. See enforce() for more about converters.

attach_to(app)
Hook the validator into a Findig application.

40 Chapter 2. API Documentation

http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.BadRequest
https://docs.python.org/3/library/functions.html#object
http://werkzeug.pocoo.org/docs/0.10/routing/#rule-format

Findig Documentation, Release 0.1.0

Doing so allows the validator to inspect and replace incoming input data. This is called automatically for
an app passed to the validator’s constructor, but can be called for additional app instances. This function
should only be called once per application.

Parameters app (findig.App) – The Findig application that the validator is attached to.

static date(format[, format[, ...]])
Create a function that validates a date field.

Parameters format – A date/time format according to
datetime.datetime.strptime(). If more than one formats are passed in, the
generated function will try each format in order until one of them works on the field (or until
there are no formats left to try).

Example:

>>> func = Validator.date("%Y-%m-%d %H:%M:%S%z")
>>> func("2015-07-17 09:00:00+0400")
datetime.datetime(2015, 7, 17, 9, 0, tzinfo=datetime.timezone(datetime.timedelta(0, 14400)))
>>> func("not-a-date")
Traceback (most recent call last):
...

ValueError: time data 'not-a-date' does not match format '%Y-%m-%d %H:%M:%S%z'

>>> func = Validator.date("%Y-%m-%d %H:%M:%S%z", "%Y-%m-%d")
>>> func("2015-07-17")
datetime.datetime(2015, 7, 17, 0, 0)

enforce(resource, **validation_spec)
Register a validation specification for a resource.

The validation specification is a set of field=converter arguments linking an input field name to a
converter that should be used to validate the field. A converter can be any of the following:

•collections.abc.Callable (including functions) – This can be a simple type such as int or
uuid.UUID, but any function or callable can work. It should take a field value and convert it to a
value of the desired type. If it throws an error, then findig will raise a BadRequest exception.

Example:

Converts an int from a valid string base 10 representation:
validator.enforce(resource, game_id=int)

Converts to a float from a valid string
validator.enforce(resource, duration=float)

•str – If a string is given, then it is interpreted as a converter specification. A converter specification
includes the converter name and optionally arguments for pre-registered converters. The following
converters are pre-registered by default (you may notice that they correspond to the URL rule con-
verters available for werkzeug):

string(minlength=1, length=None, maxlength=None)
This converter will accept a string.

Parameters
– length – If given, it will indicate a fixed length field.
– minlength – The minimum allowed length for the field.
– maxlength – The maximum allowed length for the field.

any(*items)
This converter will accept only values from the variable list of options passed as the converter

2.2. Higher-level tools 41

https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/uuid.html#uuid.UUID
http://werkzeug.pocoo.org/docs/exceptions/#werkzeug.exceptions.BadRequest
https://docs.python.org/3/library/stdtypes.html#str

Findig Documentation, Release 0.1.0

arguments. It’s useful for limiting a field’s value to a small set of possible options.

int(fixed_digits=0, min=None, max=None)
This converter will accept a string representation of a non-negative integer.

Parameters
– fixed_digits – The number of fixed digits in the field. For example, set this to

3 to convert ’001’ but not ’1’. The default is a variable number of digits.
– min – The minimum allowed value for the field.
– max – The maximum allowed value for the field.

float(min=None, max=None)
This converter will accept a string representation of a non-negative floating point number.

Parameters
– min – The minimum allowed value for the field.
– max – The maximum allowed value for the field.

uuid()
This converter will accept a string representation of a uuid and convert it to a uuid.UUID.

Converters that do not need arguments can omit the parentheses in the converter specification.

Examples:

Converts a 4 character string
validator.enforce(resource, student_id='string(length=10)')

Converts any of these string values: 'foo', 1000, True
validator.enforce(resource, field='any(foo, 1000, True)')

Converts any non-negative integer
validator.enforce(resource, game_id='int')

and any float <1000
validator.enforce(resource, duration='float(max=1000)')

Important: Converter specifications in this form cannot match strings that contain forward slashes.
For example, ‘string(length=2)’ will fail to match ‘/e’ and ‘any(application/json,html)’ will fail to
match ‘application/json’.

•or, list – This must be a singleton list containing a converter. When this is given, the validator will
treat the field like a list and use the converter to convert each item.

Example:

Converts a list of integers
validator.enforce(resource, games=[int])

Converts a list of uuids
validator.enforce(resource, components=['uuid'])

Converts a list of fixed length strings
validator.enforce(resource, students=['string(length=10)'])

This method can be used as a decorator factory for resources:

@validator.enforce(uid=int, friends=[int])
@app.route("/")
def res():

return {}

42 Chapter 2. API Documentation

https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/stdtypes.html#list

Findig Documentation, Release 0.1.0

Converter specifications given here are only checked when a field is present; see restrict() for speci-
fying required fields.

Warning: Because of the way validators are hooked up, registering new specifications after the first
request has run might cause unexpected behavior (and even internal server errors).

enforce_all(**validation_spec)
Register a global validation specification.

This function works like enforce(), except that the validation specification is registered for all re-
sources instead of a single one.

Global validation specifications have lower precedence than resource specific ones.

static regex(pattern, flags=0, template=None)
Create a function that validates strings against a regular expression.

>>> func = Validator.regex("boy")
>>> func("boy")
'boy'
>>> func("That boy")
Traceback (most recent call last):
...

ValueError: That boy
>>> func("boy, that's handy.")
Traceback (most recent call last):
...

ValueError: boy, that's handy.

If you supply a template, it is used to construct a return value by doing backslash substitution:

>>> func = Validator.regex("(male|female)", template=r"Gender: \1")
>>> func("male")
'Gender: male'
>>> func("alien")
Traceback (most recent call last):
...

ValueError: alien

restrict([field[, field[, ...]]], strip_extra=True)
Restrict the input data to the given fields

Parameters

• field – A field name that should be allowed. An asterisk at the start of the field
name indicates a required field (asterisks at the start of field names can be escaped
with another asterisk character). This parameter can be used multiple times to indicate
different fields.

• strip_extra – Controls the behavior upon encountering a field not contained
in the list, during validation. If True, the field will be removed. Otherwise, a
UnexpectedFields is raised.

Once this method is called, any field names that do not appear in the list are disallowed.

validate(data)
Validate the data with the validation specifications that have been collected.

This function must be called within an active request context in order to work.

Parameters data (mapping, or object with gettable/settable fields) – Input data

2.2. Higher-level tools 43

Findig Documentation, Release 0.1.0

Raises ValidationFailed if one or more fields could not be validated.

This is an internal method.

2.2.5 Abstract classes for higher-level tools

Some higher-level tools aren’t explicitly implemented by Findig; rather abstract classes for how they are expected to
behave are defined so that support libraries and applications can provide their own implementations.

Data sets

Data sets are one example of higher level tools without an explicit implementation. Abstractly, they’re collections
of resource data that also encapsulate an implicit data model (i.e., instructions on data access). This makes them a
powerful replacement for explicitly defining a data-model for each resource, since a resource function can instead
return a data set and have Findig construct a resource from it:

@app.route("/items/<int:id>")
@app.resource(lazy=True)
def item(id):

return items().fetch(id=id)

@app.route("/items")
@item.collection(lazy=True)
def items():

return SomeDataSet()

Findig currently includes one concrete implementation: findig.extras.redis.RedisSet.

class findig.tools.dataset.AbstractDataSet
An abstract data set is a representation of a collection of items.

Concrete implementations must provide at least an implementation for __iter__, which should return an
iterator of AbstractRecord instances.

fetch(**search_spec)
Fetch an AbstractRecord matching the search specification.

If this is called outside a request, a lazy record is returned immediately (i.e., the backend isn’t hit until the
record is explicitly queried).

fetch_now(**search_spec)
Fetch an AbstractRecord matching the search specification.

Unlike fetch(), this function will always hit the backend.

filtered(**search_spec)
Return a filtered view of this data set.

Each keyword represents the name of a field that is checked, and the corresponding argument indicates
what it is checked against. If the argument is Callable, then it should be a predicate that returns True
if the field is valid (be aware that the predicate will passed be None if the field isn’t present on the record),
otherwise it is compared against the field for equality.

limit(count, offset=0)
Return a limited version of this data set.

Parameters

• offset – The number of items to skip from the beginning

44 Chapter 2. API Documentation

https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable

Findig Documentation, Release 0.1.0

• count – The maximum number of items to return

sorted(*sort_spec, descending=False)
Return a sorted view of this data set.

The method takes a variable number of arguments that specify its sort specification.

If a single, callable argument is provided, it is taken as a sort key for a record.

Otherwise, the arguments are taken as field names to be sorted, in the same order given in the argument
list. Records that omit one of these fields appear later in the sorted set than those that don’t.

class findig.tools.dataset.MutableDataSet
An abstract data set that can add new child elements.

add(data)
Add a new child item to the data set.

class findig.tools.dataset.AbstractRecord
An representation of an item belonging to a collection.

read()
Read the record’s data and return a mapping of fields to values.

class findig.tools.dataset.MutableRecord
An abstract record that can update or delete itself.

close_edit_block(token)
End a transaction started by start_edit_block().

delete()
Delete the record’s data.

edit_block()
A context manager for grouping a chain of edits together. Some subclasses may not support performing
reads inside an edit block.

patch(add_data, remove_fields)
Update the record’s data with the new data.

start_edit_block()
Start a transaction to the backend.

Backend edits made through this object should be grouped together until close_edit_block() is
called.

Returns A token that is passed into close_edit_block().

2.3 Added features enabled by third-party libraries

The modules in the package provide some extra functionality, but rely on additional third-party libraries being present
in order to work.

2.3.1 findig.extras.redis — Some tools that are backed by Redis

Note: This module requires redis-py and will raise an ImportError if redis-py is not installed.

2.3. Added features enabled by third-party libraries 45

https://docs.python.org/3/library/exceptions.html#ImportError

Findig Documentation, Release 0.1.0

class findig.extras.redis.RedisSet(key=None, client=None, index_size=4)
Bases: findig.tools.dataset.MutableDataSet

A RedisSet is an AbstractDataSet that stores its items in a Redis database (using a Sorted Set to represent
the collection, and a sorted set to represent items).

Parameters

• key – The base key that should be used for the sorted set. If not given, one is determin-
istically generated based on the current resource.

• client – A redis.StrictRedis instance that should be used to communicate with
the redis server. If not given, a default instance is used.

• index_size – The number of bytes to use to index items in the set (per item).

2.4 General Utilities

class findig.utils.DataPipe(*funcs)
An object that folds data over a set of functions.

Parameters funcs – A variable list of functions. Each function must take one parameter and
return a single value.

Calling this object with data will pass the data through each one of the functions that is has collected, using the
result of one function as the argument for the next function. For example, if the data pipe dpipe contains the
functions [f1, f2, ..., fn], then dpipe(data) is equivalent to fn(...(f2(f1(data)))).

stage(func)
Append a function to the data pipes internal list.

This returns the function that it is called with, so it can be used as a decorator.

class findig.utils.extremum(direction=1)
A class whose instances are always ordered at one extreme.

Parameters direction – If positive, always order as greater than every other object. If negative,
orders as less than every other object.

findig.utils.tryeach(funcs, *args, **kwargs)
Call every item in a list a functions with the same arguments, until one of them does not throw an error. If all of
the functions raise an error, then the error from the last function will be re-raised.

Parameters funcs – An iterable of callables.

46 Chapter 2. API Documentation

Python Module Index

f
findig, 21
findig.content, 23
findig.context, 24
findig.data_model, 25
findig.dispatcher, 26
findig.extras, 45
findig.extras.redis, 45
findig.resource, 27
findig.tools, 30
findig.tools.counter, 31
findig.tools.protector, 34
findig.tools.protector.scopeutil, 38
findig.tools.validator, 39
findig.utils, 46
findig.wrappers, 30

47

Findig Documentation, Release 0.1.0

48 Python Module Index

Index

Symbols
__init__() (findig.tools.counter.AbstractLog method), 33
__iter__() (findig.tools.counter.AbstractLog method), 33

A
AbstractDataModel (class in findig.data_model), 25
AbstractDataSet (class in findig.tools.dataset), 44
AbstractLog (class in findig.tools.counter), 33
AbstractRecord (class in findig.tools.dataset), 45
AbstractResource (class in findig.resource), 29
add() (findig.tools.dataset.MutableDataSet method), 45
after() (findig.tools.counter.Counter method), 33
after_every() (findig.tools.counter.Counter method), 33
ANY (in module findig.tools.protector.scopeutil), 39
App (class in findig), 21
App (class in findig.json), 22
app (in module findig.context), 24
at() (findig.tools.counter.Counter method), 33
attach_to() (findig.tools.counter.Counter method), 31
attach_to() (findig.tools.protector.Protector method), 36
attach_to() (findig.tools.validator.Validator method), 40
auth_func() (findig.tools.protector.BasicProtector

method), 37
authenticated_client (findig.tools.protector.Protector at-

tribute), 37
authenticated_user (findig.tools.protector.Protector

attribute), 37
authorized_scope (findig.tools.protector.Protector at-

tribute), 37

B
BasicProtector (class in findig.tools.protector), 37
build_context() (findig.App method), 21
build_rules() (findig.dispatcher.Dispatcher method), 26
build_url() (findig.resource.AbstractResource method),

29

C
check_auth() (findig.tools.protector.GateKeeper method),

37

check_encapsulates() (in module
findig.tools.protector.scopeutil), 38

cleanup_hook() (findig.App method), 21
close_edit_block() (findig.tools.dataset.MutableRecord

method), 45
Collection (class in findig.resource), 30
collection() (findig.resource.Resource method), 28
compose_model() (findig.resource.Resource method), 28
compress_scope_items() (in module

findig.tools.protector.scopeutil), 38
context() (findig.App method), 21
count() (findig.tools.counter.AbstractLog method), 33
Counter (class in findig.tools.counter), 31
ctx (in module findig.context), 24

D
DataModel (class in findig.data_model), 25
DataPipe (class in findig.utils), 46
date() (findig.tools.validator.Validator static method), 41
delete() (findig.tools.dataset.MutableRecord method), 45
dispatch() (findig.dispatcher.Dispatcher method), 27
Dispatcher (class in findig.dispatcher), 26
dispatcher (in module findig.context), 24

E
edit_block() (findig.tools.dataset.MutableRecord

method), 45
enforce() (findig.tools.validator.Validator method), 41
enforce_all() (findig.tools.validator.Validator method), 43
error_handler (findig.dispatcher.Dispatcher attribute), 26
error_handler (findig.resource.Resource attribute), 28
ErrorHandler (class in findig.content), 23
every() (findig.tools.counter.Counter method), 32
extremum (class in findig.utils), 46

F
fetch() (findig.tools.dataset.AbstractDataSet method), 44
fetch_now() (findig.tools.dataset.AbstractDataSet

method), 44
fields (findig.tools.validator.ValidationFailed attribute),

40

49

Findig Documentation, Release 0.1.0

filtered() (findig.tools.dataset.AbstractDataSet method),
44

findig (module), 21
findig.content (module), 23
findig.context (module), 24
findig.data_model (module), 25
findig.dispatcher (module), 26
findig.extras (module), 45
findig.extras.redis (module), 45
findig.resource (module), 27
findig.tools (module), 30
findig.tools.counter (module), 31
findig.tools.protector (module), 34
findig.tools.protector.scopeutil (module), 38
findig.tools.validator (module), 39
findig.utils (module), 46
findig.wrappers (module), 30
Formatter (class in findig.content), 23
formatter (findig.dispatcher.Dispatcher attribute), 26
formatter (findig.resource.Resource attribute), 28

G
GateKeeper (class in findig.tools.protector), 37
get_clientid() (findig.tools.protector.GateKeeper

method), 38
get_scopes() (findig.tools.protector.GateKeeper method),

38
get_supported_methods()

(findig.resource.AbstractResource method), 30
get_supported_methods() (findig.resource.Resource

method), 29
get_username() (findig.tools.protector.GateKeeper

method), 38
guard() (findig.tools.protector.Protector method), 36

H
handle_request() (findig.resource.AbstractResource

method), 30
handle_request() (findig.resource.Resource method), 29
hits() (findig.tools.counter.Counter method), 33

I
input (findig.wrappers.Request attribute), 30
InvalidFields, 40

L
limit() (findig.tools.dataset.AbstractDataSet method), 44

M
max_content_length (findig.wrappers.Request attribute),

30
MissingFields, 40
model (findig.resource.Resource attribute), 28

MutableDataSet (class in findig.tools.dataset), 45
MutableRecord (class in findig.tools.dataset), 45

N
normalize_scope_items() (in module

findig.tools.protector.scopeutil), 38

P
Parser (class in findig.content), 24
parser (findig.dispatcher.Dispatcher attribute), 26
parser (findig.resource.Resource attribute), 28
partition() (findig.tools.counter.Counter method), 31
patch() (findig.tools.dataset.MutableRecord method), 45
Protector (class in findig.tools.protector), 35

R
read() (findig.tools.dataset.AbstractRecord method), 45
RedisSet (class in findig.extras.redis), 45
regex() (findig.tools.validator.Validator static method), 43
register() (findig.content.ErrorHandler method), 23
register() (findig.content.Formatter method), 23
register() (findig.content.Parser method), 24
Request (class in findig.wrappers), 30
request (in module findig.context), 24
request_class (findig.App attribute), 21
Resource (class in findig.resource), 27
resource (in module findig.context), 24
resource() (findig.dispatcher.Dispatcher method), 27
response_class (findig.dispatcher.Dispatcher attribute), 26
restrict() (findig.tools.validator.Validator method), 43
RFC

RFC 2617#section-2, 34
route() (findig.dispatcher.Dispatcher method), 27

S
sorted() (findig.tools.dataset.AbstractDataSet method), 45
stage() (findig.utils.DataPipe method), 46
start_edit_block() (findig.tools.dataset.MutableRecord

method), 45
startup_hook() (findig.App method), 22

T
test_context() (findig.App method), 22
track() (findig.tools.counter.AbstractLog method), 34
tryeach() (in module findig.utils), 46

U
UnexpectedFields, 40
unrouted_resources (findig.dispatcher.Dispatcher at-

tribute), 27
url_adapter (in module findig.context), 24
url_values (in module findig.context), 24

50 Index

Findig Documentation, Release 0.1.0

V
validate() (findig.tools.validator.Validator method), 43
ValidationFailed, 39
Validator (class in findig.tools.validator), 40
validator (findig.tools.validator.ValidationFailed at-

tribute), 40

Index 51

	User Guide
	Introduction
	Installation
	Quickstart
	taskman — A tutorial

	API Documentation
	Findig core modules
	Higher-level tools
	Added features enabled by third-party libraries
	General Utilities

	Python Module Index

